Step | Hyp | Ref
| Expression |
1 | | df-mnc 36722 |
. . . . 5
⊢ Monic =
(𝑠 ∈ 𝒫 ℂ
↦ {𝑝 ∈
(Poly‘𝑠) ∣
((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
2 | 1 | dmmptss 5548 |
. . . 4
⊢ dom Monic
⊆ 𝒫 ℂ |
3 | | elfvdm 6130 |
. . . 4
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic ) |
4 | 2, 3 | sseldi 3566 |
. . 3
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ) |
5 | 4 | elpwid 4118 |
. 2
⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ) |
6 | | plybss 23754 |
. . 3
⊢ (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
7 | 6 | adantr 480 |
. 2
⊢ ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ) |
8 | | cnex 9896 |
. . . . . 6
⊢ ℂ
∈ V |
9 | 8 | elpw2 4755 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
10 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆)) |
11 | | rabeq 3166 |
. . . . . . 7
⊢
((Poly‘𝑠) =
(Poly‘𝑆) →
{𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
13 | | fvex 6113 |
. . . . . . 7
⊢
(Poly‘𝑆)
∈ V |
14 | 13 | rabex 4740 |
. . . . . 6
⊢ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈
V |
15 | 12, 1, 14 | fvmpt 6191 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 ℂ →
( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
16 | 9, 15 | sylbir 224 |
. . . 4
⊢ (𝑆 ⊆ ℂ → ( Monic
‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
17 | 16 | eleq2d 2673 |
. . 3
⊢ (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})) |
18 | | fveq2 6103 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃)) |
19 | | fveq2 6103 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃)) |
20 | 18, 19 | fveq12d 6109 |
. . . . 5
⊢ (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃))) |
21 | 20 | eqeq1d 2612 |
. . . 4
⊢ (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) |
22 | 21 | elrab 3331 |
. . 3
⊢ (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) |
23 | 17, 22 | syl6bb 275 |
. 2
⊢ (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))) |
24 | 5, 7, 23 | pm5.21nii 367 |
1
⊢ (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) |