Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 36725
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 36722 . . . . 5 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
21dmmptss 5548 . . . 4 dom Monic ⊆ 𝒫 ℂ
3 elfvdm 6130 . . . 4 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic )
42, 3sseldi 3566 . . 3 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
54elpwid 4118 . 2 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ)
6 plybss 23754 . . 3 (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
76adantr 480 . 2 ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ)
8 cnex 9896 . . . . . 6 ℂ ∈ V
98elpw2 4755 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
10 fveq2 6103 . . . . . . 7 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
11 rabeq 3166 . . . . . . 7 ((Poly‘𝑠) = (Poly‘𝑆) → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
13 fvex 6113 . . . . . . 7 (Poly‘𝑆) ∈ V
1413rabex 4740 . . . . . 6 {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈ V
1512, 1, 14fvmpt 6191 . . . . 5 (𝑆 ∈ 𝒫 ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
169, 15sylbir 224 . . . 4 (𝑆 ⊆ ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1716eleq2d 2673 . . 3 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}))
18 fveq2 6103 . . . . . 6 (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃))
19 fveq2 6103 . . . . . 6 (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃))
2018, 19fveq12d 6109 . . . . 5 (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃)))
2120eqeq1d 2612 . . . 4 (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2221elrab 3331 . . 3 (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2317, 22syl6bb 275 . 2 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)))
245, 7, 23pm5.21nii 367 1 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  wss 3540  𝒫 cpw 4108  dom cdm 5038  cfv 5804  cc 9813  1c1 9816  Polycply 23744  coeffccoe 23746  degcdgr 23747   Monic cmnc 36720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ply 23748  df-mnc 36722
This theorem is referenced by:  mncply  36726  mnccoe  36727
  Copyright terms: Public domain W3C validator