Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapsnd Structured version   Visualization version   GIF version

Theorem elmapsnd 38391
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elmapsnd.1 (𝜑𝐹 Fn {𝐴})
elmapsnd.2 (𝜑𝐵𝑉)
elmapsnd.3 (𝜑 → (𝐹𝐴) ∈ 𝐵)
Assertion
Ref Expression
elmapsnd (𝜑𝐹 ∈ (𝐵𝑚 {𝐴}))

Proof of Theorem elmapsnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapsnd.1 . . . 4 (𝜑𝐹 Fn {𝐴})
2 elsni 4142 . . . . . . . 8 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
32fveq2d 6107 . . . . . . 7 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) = (𝐹𝐴))
5 elmapsnd.3 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐵)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
74, 6eqeltrd 2688 . . . . 5 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) ∈ 𝐵)
87ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵)
91, 8jca 553 . . 3 (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
10 ffnfv 6295 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
119, 10sylibr 223 . 2 (𝜑𝐹:{𝐴}⟶𝐵)
12 elmapsnd.2 . . 3 (𝜑𝐵𝑉)
13 snex 4835 . . . 4 {𝐴} ∈ V
1413a1i 11 . . 3 (𝜑 → {𝐴} ∈ V)
1512, 14elmapd 7758 . 2 (𝜑 → (𝐹 ∈ (𝐵𝑚 {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵))
1611, 15mpbird 246 1 (𝜑𝐹 ∈ (𝐵𝑚 {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {csn 4125   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746
This theorem is referenced by:  ssmapsn  38403
  Copyright terms: Public domain W3C validator