Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Visualization version   GIF version

Theorem ellimc2 23447
 Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ellimc2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Distinct variable groups:   𝑤,𝑢,𝐴   𝑢,𝐵,𝑤   𝜑,𝑢,𝑤   𝑢,𝐶,𝑤   𝑢,𝐹,𝑤   𝑢,𝐾,𝑤

Proof of Theorem ellimc2
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23445 . . . 4 (𝐹 lim 𝐵) ⊆ ℂ
21sseli 3564 . . 3 (𝐶 ∈ (𝐹 lim 𝐵) → 𝐶 ∈ ℂ)
32pm4.71ri 663 . 2 (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)))
4 eqid 2610 . . . . . 6 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
5 ellimc2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6 eqid 2610 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7 limccl.f . . . . . 6 (𝜑𝐹:𝐴⟶ℂ)
8 limccl.a . . . . . 6 (𝜑𝐴 ⊆ ℂ)
9 limccl.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
104, 5, 6, 7, 8, 9ellimc 23443 . . . . 5 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
125cnfldtopon 22396 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
139snssd 4281 . . . . . . . 8 (𝜑 → {𝐵} ⊆ ℂ)
148, 13unssd 3751 . . . . . . 7 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
15 resttopon 20775 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1612, 14, 15sylancr 694 . . . . . 6 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1716adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1812a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐾 ∈ (TopOn‘ℂ))
19 ssun2 3739 . . . . . . 7 {𝐵} ⊆ (𝐴 ∪ {𝐵})
20 snssg 4268 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
219, 20syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
2219, 21mpbiri 247 . . . . . 6 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
2322adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
24 elun 3715 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
25 velsn 4141 . . . . . . . . 9 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2625orbi2i 540 . . . . . . . 8 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2724, 26bitri 263 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
28 simpllr 795 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ 𝑧 = 𝐵) → 𝐶 ∈ ℂ)
29 pm5.61 745 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
307ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3130ad2ant2r 779 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3229, 31sylan2b 491 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ ((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3332anassrs 678 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ ¬ 𝑧 = 𝐵) → (𝐹𝑧) ∈ ℂ)
3428, 33ifclda 4070 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3527, 34sylan2b 491 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3635, 6fmptd 6292 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
37 iscnp 20851 . . . . . 6 (((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ∧ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))))
3837baibd 946 . . . . 5 ((((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
3917, 18, 23, 36, 38syl31anc 1321 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
40 iftrue 4042 . . . . . . . . . . 11 (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
4140, 6fvmptg 6189 . . . . . . . . . 10 ((𝐵 ∈ (𝐴 ∪ {𝐵}) ∧ 𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4222, 41sylan 487 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4342eleq1d 2672 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢𝐶𝑢))
4443imbi1d 330 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
4544adantr 480 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
465cnfldtop 22397 . . . . . . . . . . 11 𝐾 ∈ Top
47 cnex 9896 . . . . . . . . . . . . . 14 ℂ ∈ V
4847ssex 4730 . . . . . . . . . . . . 13 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
4914, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∪ {𝐵}) ∈ V)
5049ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐴 ∪ {𝐵}) ∈ V)
51 restval 15910 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ (𝐴 ∪ {𝐵}) ∈ V) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5246, 50, 51sylancr 694 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5352rexeqdv 3122 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))
54 vex 3176 . . . . . . . . . . . 12 𝑤 ∈ V
5554inex1 4727 . . . . . . . . . . 11 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
5655rgenw 2908 . . . . . . . . . 10 𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
57 eqid 2610 . . . . . . . . . . 11 (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))
58 eleq2 2677 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (𝐵𝑣𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
59 imaeq2 5381 . . . . . . . . . . . . 13 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
6059sseq1d 3595 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢))
6158, 60anbi12d 743 . . . . . . . . . . 11 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6257, 61rexrnmpt 6277 . . . . . . . . . 10 (∀𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6356, 62mp1i 13 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6422ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
65 elin 3758 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ (𝐵𝑤𝐵 ∈ (𝐴 ∪ {𝐵})))
6665rbaib 945 . . . . . . . . . . . 12 (𝐵 ∈ (𝐴 ∪ {𝐵}) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
6764, 66syl 17 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
68 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶 ∈ ℂ)
69 fvex 6113 . . . . . . . . . . . . . . . . 17 (𝐹𝑧) ∈ V
70 ifexg 4107 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ V) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7168, 69, 70sylancl 693 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7271ralrimivw 2950 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
73 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7473fnmpt 5933 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V → (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})))
7573fmpt 6289 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢)
76 df-f 5808 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7775, 76bitri 263 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7877baib 942 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7972, 74, 783syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
80 simplrr 797 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶𝑢)
81 inss2 3796 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ {𝐵}) ⊆ {𝐵}
8281sseli 3564 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑤 ∩ {𝐵}) → 𝑧 ∈ {𝐵})
8325, 40sylbi 206 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝐵} → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
8483eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8582, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑤 ∩ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8680, 85syl5ibrcom 236 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑧 ∈ (𝑤 ∩ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
8786ralrimiv 2948 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
88 undif1 3995 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
8988ineq2i 3773 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝑤 ∩ (𝐴 ∪ {𝐵}))
90 indi 3832 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9189, 90eqtr3i 2634 . . . . . . . . . . . . . . . . . 18 (𝑤 ∩ (𝐴 ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9291raleqi 3119 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
93 ralunb 3756 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9492, 93bitri 263 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9594rbaib 945 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9687, 95syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9779, 96bitr3d 269 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
98 inss2 3796 . . . . . . . . . . . . . . . 16 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
9998sseli 3564 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
100 eldifsni 4261 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
101 ifnefalse 4048 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴 ∖ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
103102eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
10499, 103syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
105104ralbiia 2962 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢)
10697, 105syl6bb 275 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
107 df-ima 5051 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵})))
108 inss2 3796 . . . . . . . . . . . . . . . 16 (𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵})
109 resmpt 5369 . . . . . . . . . . . . . . . 16 ((𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵}) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
110108, 109mp1i 13 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
111110rneqd 5274 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
112107, 111syl5eq 2656 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
113112sseq1d 3595 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
1147ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐹:𝐴⟶ℂ)
115 ffun 5961 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → Fun 𝐹)
116114, 115syl 17 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → Fun 𝐹)
117 difss 3699 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
11898, 117sstri 3577 . . . . . . . . . . . . . 14 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ 𝐴
119 fdm 5964 . . . . . . . . . . . . . . 15 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
120114, 119syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → dom 𝐹 = 𝐴)
121118, 120syl5sseqr 3617 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
122 funimass4 6157 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
123116, 121, 122syl2anc 691 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
124106, 113, 1233bitr4d 299 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
12567, 124anbi12d 743 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
126125rexbidva 3031 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
12753, 63, 1263bitrd 293 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
128127anassrs 678 . . . . . . 7 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝐶𝑢) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
129128pm5.74da 719 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
13045, 129bitrd 267 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
131130ralbidva 2968 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
13211, 39, 1313bitrd 293 . . 3 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
133132pm5.32da 671 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
1343, 133syl5bb 271 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  {csn 4125   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   “ cima 5041  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  Topctop 20517  TopOnctopon 20518   CnP ccnp 20839   limℂ climc 23432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436 This theorem is referenced by:  limcnlp  23448  ellimc3  23449  limcflf  23451  limcresi  23455  limciun  23464  lhop1lem  23580  limccog  38687
 Copyright terms: Public domain W3C validator