Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimph Structured version   Visualization version   GIF version

Theorem elimph 27059
 Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
elimph.1 𝑋 = (BaseSet‘𝑈)
elimph.5 𝑍 = (0vec𝑈)
elimph.6 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
elimph if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋

Proof of Theorem elimph
StepHypRef Expression
1 elimph.1 . 2 𝑋 = (BaseSet‘𝑈)
2 elimph.5 . 2 𝑍 = (0vec𝑈)
3 elimph.6 . . 3 𝑈 ∈ CPreHilOLD
43phnvi 27055 . 2 𝑈 ∈ NrmCVec
51, 2, 4elimnv 26922 1 if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  ifcif 4036  ‘cfv 5804  BaseSetcba 26825  0veccn0v 26827  CPreHilOLDccphlo 27051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-ph 27052 This theorem is referenced by:  ipdiri  27069  ipassi  27080  sii  27093
 Copyright terms: Public domain W3C validator