Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimnv | Structured version Visualization version GIF version |
Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimnv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
elimnv.5 | ⊢ 𝑍 = (0vec‘𝑈) |
elimnv.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
elimnv | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimnv.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
2 | elimnv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | elimnv.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 26873 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ 𝑍 ∈ 𝑋 |
6 | 5 | elimel 4100 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 ifcif 4036 ‘cfv 5804 NrmCVeccnv 26823 BaseSetcba 26825 0veccn0v 26827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-1st 7059 df-2nd 7060 df-grpo 26731 df-gid 26732 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-nmcv 26839 |
This theorem is referenced by: elimph 27059 |
Copyright terms: Public domain | W3C validator |