Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimdelov | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdelov.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) |
elimdelov.2 | ⊢ 𝑍 ∈ (𝑋𝐹𝑌) |
Ref | Expression |
---|---|
elimdelov | ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdelov.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐹𝐵)) | |
2 | iftrue 4042 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) = 𝐶) | |
3 | iftrue 4042 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝑋) = 𝐴) | |
4 | iftrue 4042 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐵, 𝑌) = 𝐵) | |
5 | 3, 4 | oveq12d 6567 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝐴𝐹𝐵)) |
6 | 1, 2, 5 | 3eltr4d 2703 | . 2 ⊢ (𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
7 | iffalse 4045 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) = 𝑍) | |
8 | elimdelov.2 | . . . 4 ⊢ 𝑍 ∈ (𝑋𝐹𝑌) | |
9 | 7, 8 | syl6eqel 2696 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (𝑋𝐹𝑌)) |
10 | iffalse 4045 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝑋) = 𝑋) | |
11 | iffalse 4045 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝑌) = 𝑌) | |
12 | 10, 11 | oveq12d 6567 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) = (𝑋𝐹𝑌)) |
13 | 9, 12 | eleqtrrd 2691 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))) |
14 | 6, 13 | pm2.61i 175 | 1 ⊢ if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1977 ifcif 4036 (class class class)co 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |