Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   GIF version

Theorem elhf2 31452
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1 𝐴 ∈ V
Assertion
Ref Expression
elhf2 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)

Proof of Theorem elhf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elhf 31451 . 2 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2 omon 6968 . . 3 (ω ∈ On ∨ ω = On)
3 nnon 6963 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
4 elhf2.1 . . . . . . . . . 10 𝐴 ∈ V
54rankr1a 8582 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
63, 5syl 17 . . . . . . . 8 (𝑥 ∈ ω → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
76adantl 481 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
8 elnn 6967 . . . . . . . . 9 (((rank‘𝐴) ∈ 𝑥𝑥 ∈ ω) → (rank‘𝐴) ∈ ω)
98expcom 450 . . . . . . . 8 (𝑥 ∈ ω → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
109adantl 481 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
117, 10sylbid 229 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
1211rexlimdva 3013 . . . . 5 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
13 peano2 6978 . . . . . . . 8 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
1413adantr 480 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈ ω)
15 r1rankid 8605 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
164, 15mp1i 13 . . . . . . . . 9 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
174elpw 4114 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1816, 17sylibr 223 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
19 nnon 6963 . . . . . . . . . 10 ((rank‘𝐴) ∈ ω → (rank‘𝐴) ∈ On)
20 r1suc 8516 . . . . . . . . . 10 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2119, 20syl 17 . . . . . . . . 9 ((rank‘𝐴) ∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2221adantr 480 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2318, 22eleqtrrd 2691 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
24 fveq2 6103 . . . . . . . . 9 (𝑥 = suc (rank‘𝐴) → (𝑅1𝑥) = (𝑅1‘suc (rank‘𝐴)))
2524eleq2d 2673 . . . . . . . 8 (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
2625rspcev 3282 . . . . . . 7 ((suc (rank‘𝐴) ∈ ω ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2714, 23, 26syl2anc 691 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2827expcom 450 . . . . 5 (ω ∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
2912, 28impbid 201 . . . 4 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
304tz9.13 8537 . . . . . 6 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
31 rankon 8541 . . . . . 6 (rank‘𝐴) ∈ On
3230, 312th 253 . . . . 5 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)
33 rexeq 3116 . . . . . 6 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
34 eleq2 2677 . . . . . 6 (ω = On → ((rank‘𝐴) ∈ ω ↔ (rank‘𝐴) ∈ On))
3533, 34bibi12d 334 . . . . 5 (ω = On → ((∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)))
3632, 35mpbiri 247 . . . 4 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
3729, 36jaoi 393 . . 3 ((ω ∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
382, 37ax-mp 5 . 2 (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω)
391, 38bitri 263 1 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  𝒫 cpw 4108  Oncon0 5640  suc csuc 5642  cfv 5804  ωcom 6957  𝑅1cr1 8508  rankcrnk 8509   Hf chf 31449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-r1 8510  df-rank 8511  df-hf 31450
This theorem is referenced by:  elhf2g  31453  hfsn  31456
  Copyright terms: Public domain W3C validator