Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvlem.f | ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) |
Ref | Expression |
---|---|
elcnvlem | ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnv2 5222 | . 2 ⊢ (𝐴 ∈ ◡𝐵 ↔ ∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵)) | |
2 | fveq2 6103 | . . . . 5 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = (𝐹‘〈𝑢, 𝑣〉)) | |
3 | vex 3176 | . . . . . . 7 ⊢ 𝑢 ∈ V | |
4 | vex 3176 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | 3, 4 | opelvv 5088 | . . . . . 6 ⊢ 〈𝑢, 𝑣〉 ∈ (V × V) |
6 | 3, 4 | op2ndd 7070 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (2nd ‘𝑥) = 𝑣) |
7 | 3, 4 | op1std 7069 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → (1st ‘𝑥) = 𝑢) |
8 | 6, 7 | opeq12d 4348 | . . . . . . 7 ⊢ (𝑥 = 〈𝑢, 𝑣〉 → 〈(2nd ‘𝑥), (1st ‘𝑥)〉 = 〈𝑣, 𝑢〉) |
9 | elcnvlem.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) | |
10 | opex 4859 | . . . . . . 7 ⊢ 〈𝑣, 𝑢〉 ∈ V | |
11 | 8, 9, 10 | fvmpt 6191 | . . . . . 6 ⊢ (〈𝑢, 𝑣〉 ∈ (V × V) → (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉) |
12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘〈𝑢, 𝑣〉) = 〈𝑣, 𝑢〉 |
13 | 2, 12 | syl6eq 2660 | . . . 4 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → (𝐹‘𝐴) = 〈𝑣, 𝑢〉) |
14 | 13 | eleq1d 2672 | . . 3 ⊢ (𝐴 = 〈𝑢, 𝑣〉 → ((𝐹‘𝐴) ∈ 𝐵 ↔ 〈𝑣, 𝑢〉 ∈ 𝐵)) |
15 | 14 | copsex2gb 5153 | . 2 ⊢ (∃𝑢∃𝑣(𝐴 = 〈𝑢, 𝑣〉 ∧ 〈𝑣, 𝑢〉 ∈ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
16 | 1, 15 | bitri 263 | 1 ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 Vcvv 3173 〈cop 4131 ↦ cmpt 4643 × cxp 5036 ◡ccnv 5037 ‘cfv 5804 1st c1st 7057 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: elcnvintab 36927 |
Copyright terms: Public domain | W3C validator |