Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
elcnvcnvlem | ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 5505 | . . . 4 ⊢ ◡◡𝐵 = (𝐵 ∩ (V × V)) | |
2 | incom 3767 | . . . 4 ⊢ (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵) | |
3 | 1, 2 | eqtri 2632 | . . 3 ⊢ ◡◡𝐵 = ((V × V) ∩ 𝐵) |
4 | 3 | eleq2i 2680 | . 2 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ 𝐴 ∈ ((V × V) ∩ 𝐵)) |
5 | elinlem 36923 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | |
6 | 4, 5 | bitri 263 | 1 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 I cid 4948 × cxp 5036 ◡ccnv 5037 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |