HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnop Structured version   Visualization version   GIF version

Theorem elcnop 28100
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnop (𝑇 ∈ ConOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑇

Proof of Theorem elcnop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6102 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑤) = (𝑇𝑤))
2 fveq1 6102 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
31, 2oveq12d 6567 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑤) − (𝑡𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
43fveq2d 6107 . . . . . . 7 (𝑡 = 𝑇 → (norm‘((𝑡𝑤) − (𝑡𝑥))) = (norm‘((𝑇𝑤) − (𝑇𝑥))))
54breq1d 4593 . . . . . 6 (𝑡 = 𝑇 → ((norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦 ↔ (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦))
65imbi2d 329 . . . . 5 (𝑡 = 𝑇 → (((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
76rexralbidv 3040 . . . 4 (𝑡 = 𝑇 → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
872ralbidv 2972 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
9 df-cnop 28083 . . 3 ConOp = {𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
108, 9elrab2 3333 . 2 (𝑇 ∈ ConOp ↔ (𝑇 ∈ ( ℋ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
11 ax-hilex 27240 . . . 4 ℋ ∈ V
1211, 11elmap 7772 . . 3 (𝑇 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ ℋ)
1312anbi1i 727 . 2 ((𝑇 ∈ ( ℋ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
1410, 13bitri 263 1 (𝑇 ∈ ConOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   < clt 9953  +crp 11708  chil 27160  normcno 27164   cmv 27166  ConOpccop 27187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-hilex 27240
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-cnop 28083
This theorem is referenced by:  cnopc  28156  0cnop  28222  idcnop  28224  lnopconi  28277
  Copyright terms: Public domain W3C validator