Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf2 Structured version   Visualization version   GIF version

Theorem elcncf2 22501
 Description: Version of elcncf 22500 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
elcncf2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem elcncf2
StepHypRef Expression
1 elcncf 22500 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
2 simplll 794 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
3 simprl 790 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
42, 3sseldd 3569 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥 ∈ ℂ)
5 simprr 792 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
62, 5sseldd 3569 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤 ∈ ℂ)
74, 6abssubd 14040 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
87breq1d 4593 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑤𝑥)) < 𝑧))
9 simpllr 795 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
10 simplr 788 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐹:𝐴𝐵)
1110, 3ffvelrnd 6268 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ 𝐵)
129, 11sseldd 3569 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑥) ∈ ℂ)
1310, 5ffvelrnd 6268 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
149, 13sseldd 3569 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝐹𝑤) ∈ ℂ)
1512, 14abssubd 14040 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (abs‘((𝐹𝑥) − (𝐹𝑤))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
1615breq1d 4593 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
178, 16imbi12d 333 . . . . . . . 8 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1817anassrs 678 . . . . . . 7 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
1918ralbidva 2968 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2019rexbidv 3034 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2120ralbidv 2969 . . . 4 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2221ralbidva 2968 . . 3 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝐹:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
2322pm5.32da 671 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
241, 23bitrd 267 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813   < clt 9953   − cmin 10145  ℝ+crp 11708  abscabs 13822  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-abs 13824  df-cncf 22489 This theorem is referenced by:  cncfi  22505  cncffvrn  22509  abscncf  22512  recncf  22513  imcncf  22514  cjcncf  22515  mulc1cncf  22516  cncfco  22518  volcn  23180  ftc1a  23604  ulmcn  23957  dnicn  31652  ftc1anc  32663
 Copyright terms: Public domain W3C validator