Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1fzopredsuc Structured version   Visualization version   GIF version

Theorem el1fzopredsuc 39948
Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
el1fzopredsuc (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))

Proof of Theorem el1fzopredsuc
StepHypRef Expression
1 elfzelz 12213 . . 3 (𝐼 ∈ (0...𝑁) → 𝐼 ∈ ℤ)
2 1fzopredsuc 39947 . . . . 5 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
32eleq2d 2673 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
4 elun 3715 . . . . . . . . 9 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ (𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
5 elun 3715 . . . . . . . . . 10 (𝐼 ∈ ({0} ∪ (1..^𝑁)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)))
65orbi1i 541 . . . . . . . . 9 ((𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
74, 6bitri 263 . . . . . . . 8 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
8 elsng 4139 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (𝐼 ∈ {0} ↔ 𝐼 = 0))
98adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {0} ↔ 𝐼 = 0))
109orbi1d 735 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁))))
11 elsng 4139 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1211adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1310, 12orbi12d 742 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
147, 13syl5bb 271 . . . . . . 7 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
15 df-3or 1032 . . . . . . . 8 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁))
1615biimpri 217 . . . . . . 7 (((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))
1714, 16syl6bi 242 . . . . . 6 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
1817ex 449 . . . . 5 (𝑁 ∈ ℕ0 → (𝐼 ∈ ℤ → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
1918com23 84 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
203, 19sylbid 229 . . 3 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
211, 20mpdi 44 . 2 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
22 c0ex 9913 . . . . . . . . . . . 12 0 ∈ V
2322snid 4155 . . . . . . . . . . 11 0 ∈ {0}
2423a1i 11 . . . . . . . . . 10 (𝐼 = 0 → 0 ∈ {0})
25 eleq1 2676 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 ∈ {0} ↔ 0 ∈ {0}))
2624, 25mpbird 246 . . . . . . . . 9 (𝐼 = 0 → 𝐼 ∈ {0})
2726a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 0 → 𝐼 ∈ {0}))
28 idd 24 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 ∈ (1..^𝑁) → 𝐼 ∈ (1..^𝑁)))
29 snidg 4153 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ {𝑁})
30 eleq1 2676 . . . . . . . . 9 (𝐼 = 𝑁 → (𝐼 ∈ {𝑁} ↔ 𝑁 ∈ {𝑁}))
3129, 30syl5ibrcom 236 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 𝑁𝐼 ∈ {𝑁}))
3227, 28, 313orim123d 1399 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁})))
3332imp 444 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}))
34 df-3or 1032 . . . . . 6 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3533, 34sylib 207 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3635, 7sylibr 223 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
373adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
3836, 37mpbird 246 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (0...𝑁))
3938ex 449 . 2 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → 𝐼 ∈ (0...𝑁)))
4021, 39impbid 201 1 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  cun 3538  {csn 4125  (class class class)co 6549  0cc0 9815  1c1 9816  0cn0 11169  cz 11254  ...cfz 12197  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  fmtnofz04prm  40027
  Copyright terms: Public domain W3C validator