Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version |
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvalval | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eigvalfval 28140 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
2 | 1 | fveq1d 6105 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴)) |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | 3, 4 | oveq12d 6567 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑥) = ((𝑇‘𝐴) ·ih 𝐴)) |
6 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐴 → (normℎ‘𝑥) = (normℎ‘𝐴)) | |
7 | 6 | oveq1d 6564 | . . . 4 ⊢ (𝑥 = 𝐴 → ((normℎ‘𝑥)↑2) = ((normℎ‘𝐴)↑2)) |
8 | 5, 7 | oveq12d 6567 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
9 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) | |
10 | ovex 6577 | . . 3 ⊢ (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ∈ V | |
11 | 8, 9, 10 | fvmpt 6191 | . 2 ⊢ (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
12 | 2, 11 | sylan9eq 2664 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 / cdiv 10563 2c2 10947 ↑cexp 12722 ℋchil 27160 ·ih csp 27163 normℎcno 27164 eigveccei 27200 eigvalcel 27201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-map 7746 df-eigval 28097 |
This theorem is referenced by: eigvalcl 28204 eigvec1 28205 |
Copyright terms: Public domain | W3C validator |