Step | Hyp | Ref
| Expression |
1 | | nn0uz 11598 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0nn0 11184 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
3 | | 1e0p1 11428 |
. . . . . 6
⊢ 1 = (0 +
1) |
4 | | 0z 11265 |
. . . . . . 7
⊢ 0 ∈
ℤ |
5 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → (!‘𝑛) =
(!‘0)) |
6 | | fac0 12925 |
. . . . . . . . . . . 12
⊢
(!‘0) = 1 |
7 | 5, 6 | syl6eq 2660 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 → (!‘𝑛) = 1) |
8 | 7 | oveq2d 6565 |
. . . . . . . . . 10
⊢ (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1)) |
9 | | ax-1cn 9873 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
10 | 9 | div1i 10632 |
. . . . . . . . . 10
⊢ (1 / 1) =
1 |
11 | 8, 10 | syl6eq 2660 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (1 / (!‘𝑛)) = 1) |
12 | | erelem1.2 |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) |
13 | | 1ex 9914 |
. . . . . . . . 9
⊢ 1 ∈
V |
14 | 11, 12, 13 | fvmpt 6191 |
. . . . . . . 8
⊢ (0 ∈
ℕ0 → (𝐺‘0) = 1) |
15 | 2, 14 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ (𝐺‘0) =
1) |
16 | 4, 15 | seq1i 12677 |
. . . . . 6
⊢ (⊤
→ (seq0( + , 𝐺)‘0) = 1) |
17 | | 1nn0 11185 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
18 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (!‘𝑛) =
(!‘1)) |
19 | | fac1 12926 |
. . . . . . . . . . 11
⊢
(!‘1) = 1 |
20 | 18, 19 | syl6eq 2660 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (!‘𝑛) = 1) |
21 | 20 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1)) |
22 | 21, 10 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑛 = 1 → (1 / (!‘𝑛)) = 1) |
23 | 22, 12, 13 | fvmpt 6191 |
. . . . . . 7
⊢ (1 ∈
ℕ0 → (𝐺‘1) = 1) |
24 | 17, 23 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝐺‘1) =
1) |
25 | 1, 2, 3, 16, 24 | seqp1i 12679 |
. . . . 5
⊢ (⊤
→ (seq0( + , 𝐺)‘1) = (1 + 1)) |
26 | | df-2 10956 |
. . . . 5
⊢ 2 = (1 +
1) |
27 | 25, 26 | syl6eqr 2662 |
. . . 4
⊢ (⊤
→ (seq0( + , 𝐺)‘1) = 2) |
28 | 17 | a1i 11 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℕ0) |
29 | | nn0z 11277 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
30 | | 1exp 12751 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
32 | 31 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((1↑𝑛) /
(!‘𝑛)) = (1 /
(!‘𝑛))) |
33 | 32 | mpteq2ia 4668 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ ((1↑𝑛) /
(!‘𝑛))) = (𝑛 ∈ ℕ0
↦ (1 / (!‘𝑛))) |
34 | 12, 33 | eqtr4i 2635 |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
35 | 34 | efcvg 14654 |
. . . . . . 7
⊢ (1 ∈
ℂ → seq0( + , 𝐺)
⇝ (exp‘1)) |
36 | 9, 35 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ seq0( + , 𝐺) ⇝
(exp‘1)) |
37 | | df-e 14638 |
. . . . . 6
⊢ e =
(exp‘1) |
38 | 36, 37 | syl6breqr 4625 |
. . . . 5
⊢ (⊤
→ seq0( + , 𝐺) ⇝
e) |
39 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
40 | 39 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘))) |
41 | | ovex 6577 |
. . . . . . . 8
⊢ (1 /
(!‘𝑘)) ∈
V |
42 | 40, 12, 41 | fvmpt 6191 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) = (1 / (!‘𝑘))) |
43 | 42 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) = (1 / (!‘𝑘))) |
44 | | faccl 12932 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
45 | 44 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
46 | 45 | nnrecred 10943 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ) |
47 | 43, 46 | eqeltrd 2688 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) ∈ ℝ) |
48 | 45 | nnred 10912 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
49 | 45 | nngt0d 10941 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 < (!‘𝑘)) |
50 | | 1re 9918 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
51 | | 0le1 10430 |
. . . . . . . 8
⊢ 0 ≤
1 |
52 | | divge0 10771 |
. . . . . . . 8
⊢ (((1
∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 /
(!‘𝑘))) |
53 | 50, 51, 52 | mpanl12 714 |
. . . . . . 7
⊢
(((!‘𝑘) ∈
ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘))) |
54 | 48, 49, 53 | syl2anc 691 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 ≤ (1 / (!‘𝑘))) |
55 | 54, 43 | breqtrrd 4611 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 ≤ (𝐺‘𝑘)) |
56 | 1, 28, 38, 47, 55 | climserle 14241 |
. . . 4
⊢ (⊤
→ (seq0( + , 𝐺)‘1) ≤ e) |
57 | 27, 56 | eqbrtrrd 4607 |
. . 3
⊢ (⊤
→ 2 ≤ e) |
58 | 57 | trud 1484 |
. 2
⊢ 2 ≤
e |
59 | | nnuz 11599 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
60 | | 1zzd 11285 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℤ) |
61 | 2 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℕ0) |
62 | 47 | recnd 9947 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
63 | 1, 61, 62, 38 | clim2ser 14233 |
. . . . . . 7
⊢ (⊤
→ seq(0 + 1)( + , 𝐺)
⇝ (e − (seq0( + , 𝐺)‘0))) |
64 | | 0p1e1 11009 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
65 | | seqeq1 12666 |
. . . . . . . 8
⊢ ((0 + 1)
= 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)) |
66 | 64, 65 | ax-mp 5 |
. . . . . . 7
⊢ seq(0 +
1)( + , 𝐺) = seq1( + ,
𝐺) |
67 | 16 | trud 1484 |
. . . . . . . 8
⊢ (seq0( +
, 𝐺)‘0) =
1 |
68 | 67 | oveq2i 6560 |
. . . . . . 7
⊢ (e
− (seq0( + , 𝐺)‘0)) = (e − 1) |
69 | 63, 66, 68 | 3brtr3g 4616 |
. . . . . 6
⊢ (⊤
→ seq1( + , 𝐺) ⇝
(e − 1)) |
70 | | 2cnd 10970 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℂ) |
71 | | oveq2 6557 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘)) |
72 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛)) =
(𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)) |
73 | | ovex 6577 |
. . . . . . . . . . . . 13
⊢ ((1 /
2)↑𝑘) ∈
V |
74 | 71, 72, 73 | fvmpt 6191 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
75 | 74 | adantl 481 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
76 | | halfre 11123 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ |
77 | | simpr 476 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 𝑘 ∈ ℕ0) |
78 | | reexpcl 12739 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ) |
79 | 76, 77, 78 | sylancr 694 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ) |
80 | 79 | recnd 9947 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ) |
81 | 75, 80 | eqeltrd 2688 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘) ∈
ℂ) |
82 | | 1lt2 11071 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
83 | | 2re 10967 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
84 | | 0le2 10988 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
2 |
85 | | absid 13884 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) |
86 | 83, 84, 85 | mp2an 704 |
. . . . . . . . . . . . . 14
⊢
(abs‘2) = 2 |
87 | 82, 86 | breqtrri 4610 |
. . . . . . . . . . . . 13
⊢ 1 <
(abs‘2) |
88 | 87 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ 1 < (abs‘2)) |
89 | 70, 88, 75 | georeclim 14442 |
. . . . . . . . . . 11
⊢ (⊤
→ seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 −
1))) |
90 | | 2m1e1 11012 |
. . . . . . . . . . . . 13
⊢ (2
− 1) = 1 |
91 | 90 | oveq2i 6560 |
. . . . . . . . . . . 12
⊢ (2 / (2
− 1)) = (2 / 1) |
92 | | 2cn 10968 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
93 | 92 | div1i 10632 |
. . . . . . . . . . . 12
⊢ (2 / 1) =
2 |
94 | 91, 93 | eqtri 2632 |
. . . . . . . . . . 11
⊢ (2 / (2
− 1)) = 2 |
95 | 89, 94 | syl6breq 4624 |
. . . . . . . . . 10
⊢ (⊤
→ seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2) |
96 | 1, 61, 81, 95 | clim2ser 14233 |
. . . . . . . . 9
⊢ (⊤
→ seq(0 + 1)( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛)))‘0))) |
97 | | seqeq1 12666 |
. . . . . . . . . 10
⊢ ((0 + 1)
= 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))) = seq1( + ,
(𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))) |
98 | 64, 97 | ax-mp 5 |
. . . . . . . . 9
⊢ seq(0 +
1)( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))) |
99 | | oveq2 6557 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 /
2)↑0)) |
100 | | ovex 6577 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 /
2)↑0) ∈ V |
101 | 99, 72, 100 | fvmpt 6191 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘0) = ((1
/ 2)↑0)) |
102 | 2, 101 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛))‘0) = ((1 /
2)↑0) |
103 | | halfcn 11124 |
. . . . . . . . . . . . . . . 16
⊢ (1 / 2)
∈ ℂ |
104 | | exp0 12726 |
. . . . . . . . . . . . . . . 16
⊢ ((1 / 2)
∈ ℂ → ((1 / 2)↑0) = 1) |
105 | 103, 104 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
2)↑0) = 1 |
106 | 102, 105 | eqtri 2632 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛))‘0) = 1 |
107 | 106 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1) |
108 | 4, 107 | seq1i 12677 |
. . . . . . . . . . . 12
⊢ (⊤
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1) |
109 | 108 | trud 1484 |
. . . . . . . . . . 11
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1 |
110 | 109 | oveq2i 6560 |
. . . . . . . . . 10
⊢ (2
− (seq0( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 −
1) |
111 | 110, 90 | eqtri 2632 |
. . . . . . . . 9
⊢ (2
− (seq0( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1 |
112 | 96, 98, 111 | 3brtr3g 4616 |
. . . . . . . 8
⊢ (⊤
→ seq1( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1) |
113 | | nnnn0 11176 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
114 | 113, 81 | sylan2 490 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ) |
115 | 71 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 /
2)↑𝑘))) |
116 | | erelem1.1 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) |
117 | | ovex 6577 |
. . . . . . . . . . 11
⊢ (2
· ((1 / 2)↑𝑘))
∈ V |
118 | 115, 116,
117 | fvmpt 6191 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (2 · ((1 / 2)↑𝑘))) |
119 | 118 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (2 · ((1 / 2)↑𝑘))) |
120 | 113, 75 | sylan2 490 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
121 | 120 | oveq2d 6565 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘)) = (2 · ((1 /
2)↑𝑘))) |
122 | 119, 121 | eqtr4d 2647 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘))) |
123 | 59, 60, 70, 112, 114, 122 | isermulc2 14236 |
. . . . . . 7
⊢ (⊤
→ seq1( + , 𝐹) ⇝
(2 · 1)) |
124 | | 2t1e2 11053 |
. . . . . . 7
⊢ (2
· 1) = 2 |
125 | 123, 124 | syl6breq 4624 |
. . . . . 6
⊢ (⊤
→ seq1( + , 𝐹) ⇝
2) |
126 | 113, 47 | sylan2 490 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
127 | | remulcl 9900 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 /
2)↑𝑘)) ∈
ℝ) |
128 | 83, 79, 127 | sylancr 694 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ) |
129 | 113, 128 | sylan2 490 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ) |
130 | 119, 129 | eqeltrd 2688 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
131 | | faclbnd2 12940 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((2↑𝑘) / 2)
≤ (!‘𝑘)) |
132 | 131 | adantl 481 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘)) |
133 | | 2nn 11062 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
134 | | nnexpcl 12735 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
135 | 133, 77, 134 | sylancr 694 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
136 | 135 | nnrpd 11746 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈
ℝ+) |
137 | 136 | rphalfcld 11760 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((2↑𝑘) / 2) ∈
ℝ+) |
138 | 45 | nnrpd 11746 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈
ℝ+) |
139 | 137, 138 | lerecd 11767 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))) |
140 | 132, 139 | mpbid 221 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))) |
141 | | 2cnd 10970 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 2 ∈ ℂ) |
142 | 135 | nncnd 10913 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℂ) |
143 | 135 | nnne0d 10942 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ≠ 0) |
144 | 141, 142,
143 | divrecd 10683 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘)))) |
145 | | 2ne0 10990 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
146 | | recdiv 10610 |
. . . . . . . . . . . 12
⊢
((((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘))) |
147 | 92, 145, 146 | mpanr12 717 |
. . . . . . . . . . 11
⊢
(((2↑𝑘) ∈
ℂ ∧ (2↑𝑘)
≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘))) |
148 | 142, 143,
147 | syl2anc 691 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘))) |
149 | 145 | a1i 11 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 2 ≠ 0) |
150 | | nn0z 11277 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
151 | 150 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 𝑘 ∈ ℤ) |
152 | 141, 149,
151 | exprecd 12878 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
153 | 152 | oveq2d 6565 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘)))) |
154 | 144, 148,
153 | 3eqtr4rd 2655 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2))) |
155 | 140, 154 | breqtrrd 4611 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘))) |
156 | 113, 155 | sylan2 490 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘))) |
157 | 113, 43 | sylan2 490 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) = (1 / (!‘𝑘))) |
158 | 156, 157,
119 | 3brtr4d 4615 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) |
159 | 59, 60, 69, 125, 126, 130, 158 | iserle 14238 |
. . . . 5
⊢ (⊤
→ (e − 1) ≤ 2) |
160 | 159 | trud 1484 |
. . . 4
⊢ (e
− 1) ≤ 2 |
161 | | ere 14658 |
. . . . 5
⊢ e ∈
ℝ |
162 | 161, 50, 83 | lesubaddi 10465 |
. . . 4
⊢ ((e
− 1) ≤ 2 ↔ e ≤ (2 + 1)) |
163 | 160, 162 | mpbi 219 |
. . 3
⊢ e ≤ (2
+ 1) |
164 | | df-3 10957 |
. . 3
⊢ 3 = (2 +
1) |
165 | 163, 164 | breqtrri 4610 |
. 2
⊢ e ≤
3 |
166 | 58, 165 | pm3.2i 470 |
1
⊢ (2 ≤ e
∧ e ≤ 3) |