MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem2 Structured version   Visualization version   GIF version

Theorem efif1olem2 24093
Description: Lemma for efif1o 24096. (Contributed by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
efif1olem1.1 𝐷 = (𝐴(,](𝐴 + (2 · π)))
Assertion
Ref Expression
efif1olem2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Distinct variable groups:   𝑦,𝑧   𝑦,𝐴   𝑦,𝐷
Allowed substitution hints:   𝐴(𝑧)   𝐷(𝑧)

Proof of Theorem efif1olem2
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
2 2re 10967 . . . . . . 7 2 ∈ ℝ
3 pire 24014 . . . . . . 7 π ∈ ℝ
42, 3remulcli 9933 . . . . . 6 (2 · π) ∈ ℝ
5 readdcl 9898 . . . . . 6 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
61, 4, 5sylancl 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
7 resubcl 10224 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℝ)
8 2pos 10989 . . . . . . . 8 0 < 2
9 pipos 24016 . . . . . . . 8 0 < π
102, 3, 8, 9mulgt0ii 10049 . . . . . . 7 0 < (2 · π)
114, 10elrpii 11711 . . . . . 6 (2 · π) ∈ ℝ+
12 modcl 12534 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
137, 11, 12sylancl 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
146, 13resubcld 10337 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ)
154a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℝ)
16 modlt 12541 . . . . . . 7 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
177, 11, 16sylancl 693 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
1813, 15, 1, 17ltadd2dd 10075 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)))
191, 13, 6ltaddsubd 10506 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)) ↔ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
2018, 19mpbid 221 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))))
21 modge0 12540 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
227, 11, 21sylancl 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
236, 13subge02d 10498 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (0 ≤ ((𝐴𝑧) mod (2 · π)) ↔ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π))))
2422, 23mpbid 221 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))
25 rexr 9964 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2625adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ*)
27 elioc2 12107 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2826, 6, 27syl2anc 691 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2914, 20, 24, 28mpbir3and 1238 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))))
30 efif1olem1.1 . . 3 𝐷 = (𝐴(,](𝐴 + (2 · π)))
3129, 30syl6eleqr 2699 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷)
32 modval 12532 . . . . . . . . . 10 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
337, 11, 32sylancl 693 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
3433oveq2d 6565 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
356recnd 9947 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℂ)
367recnd 9947 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℂ)
374, 10gt0ne0ii 10443 . . . . . . . . . . . . . . 15 (2 · π) ≠ 0
38 redivcl 10623 . . . . . . . . . . . . . . 15 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ ∧ (2 · π) ≠ 0) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
394, 37, 38mp3an23 1408 . . . . . . . . . . . . . 14 ((𝐴𝑧) ∈ ℝ → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
407, 39syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
4140flcld 12461 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ)
4241zred 11358 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ)
43 remulcl 9900 . . . . . . . . . . 11 (((2 · π) ∈ ℝ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
444, 42, 43sylancr 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
4544recnd 9947 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
4635, 36, 45subsubd 10299 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))) = (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
471recnd 9947 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
484recni 9931 . . . . . . . . . . 11 (2 · π) ∈ ℂ
4948a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℂ)
50 simpr 476 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
5150recnd 9947 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
5247, 49, 51pnncand 10310 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − (𝐴𝑧)) = ((2 · π) + 𝑧))
5352oveq1d 6564 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5434, 46, 533eqtrd 2648 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5554oveq2d 6565 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
56 addcl 9897 . . . . . . . 8 (((2 · π) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((2 · π) + 𝑧) ∈ ℂ)
5748, 51, 56sylancr 694 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) + 𝑧) ∈ ℂ)
5851, 57, 45subsub4d 10302 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
5957, 51negsubdi2d 10287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = (𝑧 − ((2 · π) + 𝑧)))
6049, 51pncand 10272 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) + 𝑧) − 𝑧) = (2 · π))
6160negeqd 10154 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = -(2 · π))
6259, 61eqtr3d 2646 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = -(2 · π))
63 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
6448mulm1i 10354 . . . . . . . . . 10 (-1 · (2 · π)) = -(2 · π)
6563, 48, 64mulcomli 9926 . . . . . . . . 9 ((2 · π) · -1) = -(2 · π)
6662, 65syl6eqr 2662 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = ((2 · π) · -1))
6766oveq1d 6564 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
6863a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℂ)
6941zcnd 11359 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℂ)
7049, 68, 69subdid 10365 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
7167, 70eqtr4d 2647 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7255, 58, 713eqtr2d 2650 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7372oveq1d 6564 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)))
74 neg1z 11290 . . . . . . 7 -1 ∈ ℤ
75 zsubcl 11296 . . . . . . 7 ((-1 ∈ ℤ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7674, 41, 75sylancr 694 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7776zcnd 11359 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
78 divcan3 10590 . . . . . 6 (((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
7948, 37, 78mp3an23 1408 . . . . 5 ((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8077, 79syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8173, 80eqtrd 2644 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8281, 76eqeltrd 2688 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ)
83 oveq2 6557 . . . . 5 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (𝑧𝑦) = (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
8483oveq1d 6564 . . . 4 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → ((𝑧𝑦) / (2 · π)) = ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)))
8584eleq1d 2672 . . 3 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ))
8685rspcev 3282 . 2 ((((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷 ∧ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
8731, 82, 86syl2anc 691 1 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  (,]cioc 12047  cfl 12453   mod cmo 12530  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  efif1o  24096  eff1o  24099
  Copyright terms: Public domain W3C validator