Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgredlemg | Structured version Visualization version GIF version |
Description: Lemma for efgred 17984. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((#‘(𝑆‘𝑎)) < (#‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((#‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((#‘𝐵) − 1) − 1) |
efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(#‘(𝐴‘𝐾)))) |
efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(#‘(𝐵‘𝐿)))) |
efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2𝑜)) |
efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2𝑜)) |
efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
Ref | Expression |
---|---|
efgredlemg | ⊢ (𝜑 → (#‘(𝐴‘𝐾)) = (#‘(𝐵‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | fviss 6166 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜) | |
3 | 1, 2 | eqsstri 3598 | . . . . 5 ⊢ 𝑊 ⊆ Word (𝐼 × 2𝑜) |
4 | efgval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
5 | efgval2.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
6 | efgval2.t | . . . . . . 7 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
7 | efgred.d | . . . . . . 7 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
8 | efgred.s | . . . . . . 7 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) | |
9 | efgredlem.1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((#‘(𝑆‘𝑎)) < (#‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
10 | efgredlem.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
11 | efgredlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
12 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
13 | efgredlem.5 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
14 | efgredlemb.k | . . . . . . 7 ⊢ 𝐾 = (((#‘𝐴) − 1) − 1) | |
15 | efgredlemb.l | . . . . . . 7 ⊢ 𝐿 = (((#‘𝐵) − 1) − 1) | |
16 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | efgredlemf 17977 | . . . . . 6 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
17 | 16 | simpld 474 | . . . . 5 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
18 | 3, 17 | sseldi 3566 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐾) ∈ Word (𝐼 × 2𝑜)) |
19 | lencl 13179 | . . . 4 ⊢ ((𝐴‘𝐾) ∈ Word (𝐼 × 2𝑜) → (#‘(𝐴‘𝐾)) ∈ ℕ0) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (#‘(𝐴‘𝐾)) ∈ ℕ0) |
21 | 20 | nn0cnd 11230 | . 2 ⊢ (𝜑 → (#‘(𝐴‘𝐾)) ∈ ℂ) |
22 | 16 | simprd 478 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
23 | 3, 22 | sseldi 3566 | . . . 4 ⊢ (𝜑 → (𝐵‘𝐿) ∈ Word (𝐼 × 2𝑜)) |
24 | lencl 13179 | . . . 4 ⊢ ((𝐵‘𝐿) ∈ Word (𝐼 × 2𝑜) → (#‘(𝐵‘𝐿)) ∈ ℕ0) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (#‘(𝐵‘𝐿)) ∈ ℕ0) |
26 | 25 | nn0cnd 11230 | . 2 ⊢ (𝜑 → (#‘(𝐵‘𝐿)) ∈ ℂ) |
27 | 2cnd 10970 | . 2 ⊢ (𝜑 → 2 ∈ ℂ) | |
28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | efgredlema 17976 | . . . . . . 7 ⊢ (𝜑 → (((#‘𝐴) − 1) ∈ ℕ ∧ ((#‘𝐵) − 1) ∈ ℕ)) |
29 | 28 | simpld 474 | . . . . . 6 ⊢ (𝜑 → ((#‘𝐴) − 1) ∈ ℕ) |
30 | 1, 4, 5, 6, 7, 8 | efgsdmi 17968 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑆 ∧ ((#‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1)))) |
31 | 10, 29, 30 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1)))) |
32 | 14 | fveq2i 6106 | . . . . . . 7 ⊢ (𝐴‘𝐾) = (𝐴‘(((#‘𝐴) − 1) − 1)) |
33 | 32 | fveq2i 6106 | . . . . . 6 ⊢ (𝑇‘(𝐴‘𝐾)) = (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1))) |
34 | 33 | rneqi 5273 | . . . . 5 ⊢ ran (𝑇‘(𝐴‘𝐾)) = ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1))) |
35 | 31, 34 | syl6eleqr 2699 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) |
36 | 1, 4, 5, 6 | efgtlen 17962 | . . . 4 ⊢ (((𝐴‘𝐾) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) → (#‘(𝑆‘𝐴)) = ((#‘(𝐴‘𝐾)) + 2)) |
37 | 17, 35, 36 | syl2anc 691 | . . 3 ⊢ (𝜑 → (#‘(𝑆‘𝐴)) = ((#‘(𝐴‘𝐾)) + 2)) |
38 | 28 | simprd 478 | . . . . . . 7 ⊢ (𝜑 → ((#‘𝐵) − 1) ∈ ℕ) |
39 | 1, 4, 5, 6, 7, 8 | efgsdmi 17968 | . . . . . . 7 ⊢ ((𝐵 ∈ dom 𝑆 ∧ ((#‘𝐵) − 1) ∈ ℕ) → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1)))) |
40 | 11, 38, 39 | syl2anc 691 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1)))) |
41 | 12, 40 | eqeltrd 2688 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1)))) |
42 | 15 | fveq2i 6106 | . . . . . . 7 ⊢ (𝐵‘𝐿) = (𝐵‘(((#‘𝐵) − 1) − 1)) |
43 | 42 | fveq2i 6106 | . . . . . 6 ⊢ (𝑇‘(𝐵‘𝐿)) = (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1))) |
44 | 43 | rneqi 5273 | . . . . 5 ⊢ ran (𝑇‘(𝐵‘𝐿)) = ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1))) |
45 | 41, 44 | syl6eleqr 2699 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) |
46 | 1, 4, 5, 6 | efgtlen 17962 | . . . 4 ⊢ (((𝐵‘𝐿) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) → (#‘(𝑆‘𝐴)) = ((#‘(𝐵‘𝐿)) + 2)) |
47 | 22, 45, 46 | syl2anc 691 | . . 3 ⊢ (𝜑 → (#‘(𝑆‘𝐴)) = ((#‘(𝐵‘𝐿)) + 2)) |
48 | 37, 47 | eqtr3d 2646 | . 2 ⊢ (𝜑 → ((#‘(𝐴‘𝐾)) + 2) = ((#‘(𝐵‘𝐿)) + 2)) |
49 | 21, 26, 27, 48 | addcan2ad 10121 | 1 ⊢ (𝜑 → (#‘(𝐴‘𝐾)) = (#‘(𝐵‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 ∖ cdif 3537 ∅c0 3874 {csn 4125 〈cop 4131 〈cotp 4133 ∪ ciun 4455 class class class wbr 4583 ↦ cmpt 4643 I cid 4948 × cxp 5036 dom cdm 5038 ran crn 5039 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1𝑜c1o 7440 2𝑜c2o 7441 0cc0 9815 1c1 9816 + caddc 9818 < clt 9953 − cmin 10145 ℕcn 10897 2c2 10947 ℕ0cn0 11169 ...cfz 12197 ..^cfzo 12334 #chash 12979 Word cword 13146 splice csplice 13151 〈“cs2 13437 ~FG cefg 17942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-s2 13444 |
This theorem is referenced by: efgredleme 17979 |
Copyright terms: Public domain | W3C validator |