Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel0001 Structured version   Visualization version   GIF version

Theorem eel0001 37966
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
eel0001.1 𝜑
eel0001.2 𝜓
eel0001.3 𝜒
eel0001.4 (𝜃𝜏)
eel0001.5 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
eel0001 (𝜃𝜂)

Proof of Theorem eel0001
StepHypRef Expression
1 eel0001.3 . 2 𝜒
2 eel0001.4 . 2 (𝜃𝜏)
3 eel0001.1 . . 3 𝜑
4 eel0001.2 . . 3 𝜓
5 eel0001.5 . . . 4 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂)
65exp41 636 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
73, 4, 6mp2 9 . 2 (𝜒 → (𝜏𝜂))
81, 2, 7mpsyl 66 1 (𝜃𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator