Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eel0001 | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
eel0001.1 | ⊢ 𝜑 |
eel0001.2 | ⊢ 𝜓 |
eel0001.3 | ⊢ 𝜒 |
eel0001.4 | ⊢ (𝜃 → 𝜏) |
eel0001.5 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
eel0001 | ⊢ (𝜃 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel0001.3 | . 2 ⊢ 𝜒 | |
2 | eel0001.4 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | eel0001.1 | . . 3 ⊢ 𝜑 | |
4 | eel0001.2 | . . 3 ⊢ 𝜓 | |
5 | eel0001.5 | . . . 4 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂) | |
6 | 5 | exp41 636 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂)))) |
7 | 3, 4, 6 | mp2 9 | . 2 ⊢ (𝜒 → (𝜏 → 𝜂)) |
8 | 1, 2, 7 | mpsyl 66 | 1 ⊢ (𝜃 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |