Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version |
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
Ref | Expression |
---|---|
edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
edgiedgb | ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgaval 25794 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | edgiedgb.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 3 | eqcomi 2619 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
5 | 4 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (iEdg‘𝐺) = 𝐼) |
6 | 5 | rneqd 5274 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → ran (iEdg‘𝐺) = ran 𝐼) |
7 | 2, 6 | eqtrd 2644 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (Edg‘𝐺) = ran 𝐼) |
8 | 7 | eleq2d 2673 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼)) |
9 | elrnrexdmb 6272 | . . 3 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
11 | 8, 10 | bitrd 267 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐼) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 dom cdm 5038 ran crn 5039 Fun wfun 5798 ‘cfv 5804 iEdgciedg 25674 Edgcedga 25792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-fv 5812 df-edga 25793 |
This theorem is referenced by: uhgredgiedgb 25799 |
Copyright terms: Public domain | W3C validator |