MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecgrtg Structured version   Visualization version   GIF version

Theorem ecgrtg 25663
Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ecgrtg.1 (𝜑𝑁 ∈ ℕ)
ecgrtg.2 𝑃 = (Base‘(EEG‘𝑁))
ecgrtg.3 = (dist‘(EEG‘𝑁))
ecgrtg.a (𝜑𝐴𝑃)
ecgrtg.b (𝜑𝐵𝑃)
ecgrtg.c (𝜑𝐶𝑃)
ecgrtg.d (𝜑𝐷𝑃)
Assertion
Ref Expression
ecgrtg (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ (𝐴 𝐵) = (𝐶 𝐷)))

Proof of Theorem ecgrtg
Dummy variables 𝑥 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecgrtg.a . . . 4 (𝜑𝐴𝑃)
2 ecgrtg.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 eengbas 25661 . . . . . 6 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
42, 3syl 17 . . . . 5 (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5 ecgrtg.2 . . . . 5 𝑃 = (Base‘(EEG‘𝑁))
64, 5syl6eqr 2662 . . . 4 (𝜑 → (𝔼‘𝑁) = 𝑃)
71, 6eleqtrrd 2691 . . 3 (𝜑𝐴 ∈ (𝔼‘𝑁))
8 ecgrtg.b . . . 4 (𝜑𝐵𝑃)
98, 6eleqtrrd 2691 . . 3 (𝜑𝐵 ∈ (𝔼‘𝑁))
10 ecgrtg.c . . . 4 (𝜑𝐶𝑃)
1110, 6eleqtrrd 2691 . . 3 (𝜑𝐶 ∈ (𝔼‘𝑁))
12 ecgrtg.d . . . 4 (𝜑𝐷𝑃)
1312, 6eleqtrrd 2691 . . 3 (𝜑𝐷 ∈ (𝔼‘𝑁))
14 brcgr 25580 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
157, 9, 11, 13, 14syl22anc 1319 . 2 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
16 dsid 15886 . . . . . . 7 dist = Slot (dist‘ndx)
17 fvex 6113 . . . . . . . 8 (EEG‘𝑁) ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → (EEG‘𝑁) ∈ V)
19 eengstr 25660 . . . . . . . . . 10 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
202, 19syl 17 . . . . . . . . 9 (𝜑 → (EEG‘𝑁) Struct ⟨1, 17⟩)
21 isstruct 15705 . . . . . . . . . 10 ((EEG‘𝑁) Struct ⟨1, 17⟩ ↔ ((1 ∈ ℕ ∧ 17 ∈ ℕ ∧ 1 ≤ 17) ∧ Fun ((EEG‘𝑁) ∖ {∅}) ∧ dom (EEG‘𝑁) ⊆ (1...17)))
2221simp2bi 1070 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
2320, 22syl 17 . . . . . . . 8 (𝜑 → Fun ((EEG‘𝑁) ∖ {∅}))
24 structcnvcnv 15706 . . . . . . . . . 10 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
2520, 24syl 17 . . . . . . . . 9 (𝜑(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
2625funeqd 5825 . . . . . . . 8 (𝜑 → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
2723, 26mpbird 246 . . . . . . 7 (𝜑 → Fun (EEG‘𝑁))
28 opex 4859 . . . . . . . . . 10 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ V
2928prid2 4242 . . . . . . . . 9 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩}
30 elun1 3742 . . . . . . . . 9 (⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} → ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
3129, 30ax-mp 5 . . . . . . . 8 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
32 eengv 25659 . . . . . . . . 9 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
332, 32syl 17 . . . . . . . 8 (𝜑 → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
3431, 33syl5eleqr 2695 . . . . . . 7 (𝜑 → ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ (EEG‘𝑁))
35 fvex 6113 . . . . . . . . 9 (𝔼‘𝑁) ∈ V
3635, 35mpt2ex 7136 . . . . . . . 8 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) ∈ V
3736a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) ∈ V)
3816, 18, 27, 34, 37strfv2d 15733 . . . . . 6 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) = (dist‘(EEG‘𝑁)))
39 ecgrtg.3 . . . . . 6 = (dist‘(EEG‘𝑁))
4038, 39syl6reqr 2663 . . . . 5 (𝜑 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)))
41 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐴)
4241fveq1d 6105 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (𝐴𝑖))
43 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐵)
4443fveq1d 6105 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) = (𝐵𝑖))
4542, 44oveq12d 6567 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑦𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4645oveq1d 6564 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑦𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4746sumeq2dv 14281 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
48 sumex 14266 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ V
4948a1i 11 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ V)
5040, 47, 7, 9, 49ovmpt2d 6686 . . . 4 (𝜑 → (𝐴 𝐵) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
5150eqcomd 2616 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = (𝐴 𝐵))
52 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐶)
5352fveq1d 6105 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (𝐶𝑖))
54 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐷)
5554fveq1d 6105 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) = (𝐷𝑖))
5653, 55oveq12d 6567 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑦𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5756oveq1d 6564 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑦𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5857sumeq2dv 14281 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) → Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
59 sumex 14266 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ V
6059a1i 11 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ V)
6140, 58, 11, 13, 60ovmpt2d 6686 . . . 4 (𝜑 → (𝐶 𝐷) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
6261eqcomd 2616 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) = (𝐶 𝐷))
6351, 62eqeq12d 2625 . 2 (𝜑 → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ (𝐴 𝐵) = (𝐶 𝐷)))
6415, 63bitrd 267 1 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ (𝐴 𝐵) = (𝐶 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125  {cpr 4127  cop 4131   class class class wbr 4583  ccnv 5037  dom cdm 5038  Fun wfun 5798  cfv 5804  (class class class)co 6549  cmpt2 6551  1c1 9816  cle 9954  cmin 10145  cn 10897  2c2 10947  7c7 10952  cdc 11369  ...cfz 12197  cexp 12722  Σcsu 14264   Struct cstr 15691  ndxcnx 15692  Basecbs 15695  distcds 15777  Itvcitv 25135  LineGclng 25136  𝔼cee 25568   Btwn cbtwn 25569  Cgrccgr 25570  EEGceeng 25657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-ds 15791  df-itv 25137  df-lng 25138  df-ee 25571  df-cgr 25573  df-eeng 25658
This theorem is referenced by:  eengtrkg  25665
  Copyright terms: Public domain W3C validator