MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsg Structured version   Visualization version   GIF version

Theorem ecelqsg 7689
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 [𝐵]𝑅 = [𝐵]𝑅
2 eceq1 7669 . . . . 5 (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅)
32eqeq2d 2620 . . . 4 (𝑥 = 𝐵 → ([𝐵]𝑅 = [𝑥]𝑅 ↔ [𝐵]𝑅 = [𝐵]𝑅))
43rspcev 3282 . . 3 ((𝐵𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
51, 4mpan2 703 . 2 (𝐵𝐴 → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
6 ecexg 7633 . . . 4 (𝑅𝑉 → [𝐵]𝑅 ∈ V)
7 elqsg 7685 . . . 4 ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
86, 7syl 17 . . 3 (𝑅𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
98biimpar 501 . 2 ((𝑅𝑉 ∧ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
105, 9sylan2 490 1 ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  [cec 7627   / cqs 7628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ec 7631  df-qs 7635
This theorem is referenced by:  ecelqsi  7690  qliftlem  7715  erov  7731  eroprf  7732  sylow2a  17857  sylow2blem1  17858  sylow2blem2  17859  cldsubg  21724
  Copyright terms: Public domain W3C validator