Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e23an Structured version   Visualization version   GIF version

Theorem e23an 38004
 Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e23an.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e23an.2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
e23an.3 ((𝜒𝜏) → 𝜂)
Assertion
Ref Expression
e23an (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )

Proof of Theorem e23an
StepHypRef Expression
1 e23an.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e23an.2 . 2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
3 e23an.3 . . 3 ((𝜒𝜏) → 𝜂)
43ex 449 . 2 (𝜒 → (𝜏𝜂))
51, 2, 4e23 38003 1 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  (   wvd2 37814  (   wvd3 37824 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-vd2 37815  df-vd3 37827 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator