Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e123 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e123.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e123.2 | ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) |
e123.3 | ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 ) |
e123.4 | ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) |
Ref | Expression |
---|---|
e123 | ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e123.1 | . . 3 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | vd13 37847 | . 2 ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜓 ) |
3 | e123.2 | . . 3 ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) | |
4 | 3 | vd23 37848 | . 2 ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜃 ) |
5 | e123.3 | . 2 ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜂 ) | |
6 | e123.4 | . 2 ⊢ (𝜓 → (𝜃 → (𝜂 → 𝜁))) | |
7 | 2, 4, 5, 6 | e333 37981 | 1 ⊢ ( 𝜑 , 𝜒 , 𝜏 ▶ 𝜁 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 37806 ( wvd2 37814 ( wvd3 37824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-3an 1033 df-vd1 37807 df-vd2 37815 df-vd3 37827 |
This theorem is referenced by: suctrALT2VD 38093 |
Copyright terms: Public domain | W3C validator |