Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11an | Structured version Visualization version GIF version |
Description: Conjunction form of e11 37934. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11an.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11an.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11an.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
e11an | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11an.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11an.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11an.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 3 | ex 449 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
5 | 1, 2, 4 | e11 37934 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ( wvd1 37806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-vd1 37807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |