Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2ub | Structured version Visualization version GIF version |
Description: An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
Ref | Expression |
---|---|
dya2ub | ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11286 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
2 | uzid 11578 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
4 | relogbzcl 24312 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ ℝ+) → (2 logb 𝑅) ∈ ℝ) | |
5 | 3, 4 | mpan 702 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℝ) |
6 | 5 | renegcld 10336 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) ∈ ℝ) |
7 | flltp1 12463 | . . . 4 ⊢ (-(2 logb 𝑅) ∈ ℝ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) |
9 | 1z 11284 | . . . . 5 ⊢ 1 ∈ ℤ | |
10 | fladdz 12488 | . . . . 5 ⊢ ((-(2 logb 𝑅) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) | |
11 | 6, 9, 10 | sylancl 693 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) |
12 | 5 | recnd 9947 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℂ) |
13 | ax-1cn 9873 | . . . . . 6 ⊢ 1 ∈ ℂ | |
14 | negsubdi 10216 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (-(2 logb 𝑅) + 1)) | |
15 | negsubdi2 10219 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (1 − (2 logb 𝑅))) | |
16 | 14, 15 | eqtr3d 2646 | . . . . . 6 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) |
17 | 12, 13, 16 | sylancl 693 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) |
18 | 17 | fveq2d 6107 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = (⌊‘(1 − (2 logb 𝑅)))) |
19 | 11, 18 | eqtr3d 2646 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((⌊‘-(2 logb 𝑅)) + 1) = (⌊‘(1 − (2 logb 𝑅)))) |
20 | 8, 19 | breqtrd 4609 | . 2 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅)))) |
21 | 3 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ (ℤ≥‘2)) |
22 | 2rp 11713 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ ℝ+) |
24 | 1red 9934 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ+ → 1 ∈ ℝ) | |
25 | 24, 5 | resubcld 10337 | . . . . . . . 8 ⊢ (𝑅 ∈ ℝ+ → (1 − (2 logb 𝑅)) ∈ ℝ) |
26 | 25 | flcld 12461 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) |
27 | 23, 26 | rpexpcld 12894 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) |
28 | 27 | rpreccld 11758 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+) |
29 | id 22 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ+) | |
30 | logblt 24322 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) | |
31 | 21, 28, 29, 30 | syl3anc 1318 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) |
32 | logbrec 24320 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) | |
33 | 21, 27, 32 | syl2anc 691 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) |
34 | 33 | breq1d 4593 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅) ↔ -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅))) |
35 | relogbzcl 24312 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) | |
36 | 21, 27, 35 | syl2anc 691 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) |
37 | ltnegcon1 10408 | . . . . 5 ⊢ (((2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ ∧ (2 logb 𝑅) ∈ ℝ) → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) | |
38 | 36, 5, 37 | syl2anc 691 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) |
39 | 31, 34, 38 | 3bitrd 293 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) |
40 | nnlogbexp 24319 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) | |
41 | 21, 26, 40 | syl2anc 691 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) |
42 | 41 | breq2d 4595 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) |
43 | 39, 42 | bitrd 267 | . 2 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) |
44 | 20, 43 | mpbird 246 | 1 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 1c1 9816 + caddc 9818 < clt 9953 − cmin 10145 -cneg 10146 / cdiv 10563 2c2 10947 ℤcz 11254 ℤ≥cuz 11563 ℝ+crp 11708 ⌊cfl 12453 ↑cexp 12722 logb clogb 24302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-fac 12923 df-bc 12952 df-hash 12980 df-shft 13655 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 df-ef 14637 df-sin 14639 df-cos 14640 df-pi 14642 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-xrs 15985 df-qtop 15990 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-mulg 17364 df-cntz 17573 df-cmn 18018 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lp 20750 df-perf 20751 df-cn 20841 df-cnp 20842 df-haus 20929 df-tx 21175 df-hmeo 21368 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-xms 21935 df-ms 21936 df-tms 21937 df-cncf 22489 df-limc 23436 df-dv 23437 df-log 24107 df-cxp 24108 df-logb 24303 |
This theorem is referenced by: dya2icoseg 29666 |
Copyright terms: Public domain | W3C validator |