Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   GIF version

Theorem dya2iocuni 29672
Description: Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 29669. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocuni (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑐,𝑣,𝐴   𝑅,𝑐
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑐)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑐)

Proof of Theorem dya2iocuni
Dummy variables 𝑚 𝑝 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅
2 sxbrsiga.0 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 dya2ioc.1 . . . . . . . 8 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 dya2ioc.2 . . . . . . . 8 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
52, 3, 4dya2iocrfn 29668 . . . . . . 7 𝑅 Fn (ran 𝐼 × ran 𝐼)
6 zex 11263 . . . . . . . . . . 11 ℤ ∈ V
76, 6mpt2ex 7136 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V
83, 7eqeltri 2684 . . . . . . . . 9 𝐼 ∈ V
98rnex 6992 . . . . . . . 8 ran 𝐼 ∈ V
109, 9xpex 6860 . . . . . . 7 (ran 𝐼 × ran 𝐼) ∈ V
11 fnex 6386 . . . . . . 7 ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V)
125, 10, 11mp2an 704 . . . . . 6 𝑅 ∈ V
1312rnex 6992 . . . . 5 ran 𝑅 ∈ V
1413elpw2 4755 . . . 4 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅)
151, 14mpbir 220 . . 3 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅
1615a1i 11 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅)
17 rex0 3894 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)
18 rexeq 3116 . . . . . . . . . . 11 (𝐴 = ∅ → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)))
1917, 18mtbiri 316 . . . . . . . . . 10 (𝐴 = ∅ → ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2019ralrimivw 2950 . . . . . . . . 9 (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
21 rabeq0 3911 . . . . . . . . 9 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2220, 21sylibr 223 . . . . . . . 8 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
2322unieqd 4382 . . . . . . 7 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
24 uni0 4401 . . . . . . 7 ∅ = ∅
2523, 24syl6eq 2660 . . . . . 6 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
26 0ss 3924 . . . . . 6 ∅ ⊆ 𝐴
2725, 26syl6eqss 3618 . . . . 5 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
28 elequ2 1991 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑧𝑏𝑧𝑝))
29 sseq1 3589 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑏𝐴𝑝𝐴))
3028, 29anbi12d 743 . . . . . . . . . 10 (𝑏 = 𝑝 → ((𝑧𝑏𝑏𝐴) ↔ (𝑧𝑝𝑝𝐴)))
3130rexbidv 3034 . . . . . . . . 9 (𝑏 = 𝑝 → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
3231elrab 3331 . . . . . . . 8 (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
33 simpr 476 . . . . . . . . . . 11 ((𝑧𝑝𝑝𝐴) → 𝑝𝐴)
3433reximi 2994 . . . . . . . . . 10 (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → ∃𝑧𝐴 𝑝𝐴)
35 r19.9rzv 4017 . . . . . . . . . 10 (𝐴 ≠ ∅ → (𝑝𝐴 ↔ ∃𝑧𝐴 𝑝𝐴))
3634, 35syl5ibr 235 . . . . . . . . 9 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → 𝑝𝐴))
3736adantld 482 . . . . . . . 8 (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)) → 𝑝𝐴))
3832, 37syl5bi 231 . . . . . . 7 (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑝𝐴))
3938ralrimiv 2948 . . . . . 6 (𝐴 ≠ ∅ → ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
40 unissb 4405 . . . . . 6 ( {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
4139, 40sylibr 223 . . . . 5 (𝐴 ≠ ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
4227, 41pm2.61ine 2865 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴
4342a1i 11 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
442, 3, 4dya2iocnei 29671 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴))
45 simpl 472 . . . . . . . . . . 11 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ ran 𝑅)
46 ssel2 3563 . . . . . . . . . . . . . 14 ((𝑝𝐴𝑚𝑝) → 𝑚𝐴)
4746ancoms 468 . . . . . . . . . . . . 13 ((𝑚𝑝𝑝𝐴) → 𝑚𝐴)
4847adantl 481 . . . . . . . . . . . 12 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝐴)
49 simpr 476 . . . . . . . . . . . 12 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑚𝑝𝑝𝐴))
50 elequ1 1984 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (𝑧𝑝𝑚𝑝))
5150anbi1d 737 . . . . . . . . . . . . 13 (𝑧 = 𝑚 → ((𝑧𝑝𝑝𝐴) ↔ (𝑚𝑝𝑝𝐴)))
5251rspcev 3282 . . . . . . . . . . . 12 ((𝑚𝐴 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5348, 49, 52syl2anc 691 . . . . . . . . . . 11 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5445, 53jca 553 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
5554, 32sylibr 223 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
56 simprl 790 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝑝)
5755, 56jca 553 . . . . . . . 8 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∧ 𝑚𝑝))
5857reximi2 2993 . . . . . . 7 (∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
5944, 58syl 17 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
60 eluni2 4376 . . . . . 6 (𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
6159, 60sylibr 223 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → 𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6261ex 449 . . . 4 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝑚𝐴𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}))
6362ssrdv 3574 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6443, 63eqssd 3585 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴)
65 unieq 4380 . . . 4 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6665eqeq1d 2612 . . 3 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → ( 𝑐 = 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴))
6766rspcev 3282 . 2 (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
6816, 64, 67syl2anc 691 1 (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   × cxp 5036  ran crn 5039   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  1c1 9816   + caddc 9818   / cdiv 10563  2c2 10947  cz 11254  (,)cioo 12046  [,)cico 12048  cexp 12722  topGenctg 15921   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303
This theorem is referenced by:  dya2iocucvr  29673  sxbrsigalem1  29674
  Copyright terms: Public domain W3C validator