Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   GIF version

Theorem dya2iocnrect 29670
Description: For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
dya2iocnrect.1 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
Assertion
Ref Expression
dya2iocnrect ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑒,𝑏,𝑓,𝐴   𝑅,𝑏,𝑒,𝑓   𝑥,𝑏,𝑋,𝑒,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝐵(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑒,𝑓,𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnrect
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
21eleq2i 2680 . . . . 5 (𝐴𝐵𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)))
3 eqid 2610 . . . . . 6 (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
4 vex 3176 . . . . . . 7 𝑒 ∈ V
5 vex 3176 . . . . . . 7 𝑓 ∈ V
64, 5xpex 6860 . . . . . 6 (𝑒 × 𝑓) ∈ V
73, 6elrnmpt2 6671 . . . . 5 (𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ↔ ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
82, 7sylbb 208 . . . 4 (𝐴𝐵 → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
983ad2ant2 1076 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
10 simp1 1054 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
11 simp3 1056 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋𝐴)
129, 10, 11jca32 556 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
13 r19.41vv 3072 . . 3 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) ↔ (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
1413biimpri 217 . 2 ((∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
15 simprl 790 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (ℝ × ℝ))
16 simpl 472 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝐴 = (𝑒 × 𝑓))
17 simprr 792 . . . . . . 7 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋𝐴)
1817, 16eleqtrd 2690 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (𝑒 × 𝑓))
1915, 16, 183jca 1235 . . . . 5 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
20 simpr 476 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
21 xp1st 7089 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
22213ad2ant1 1075 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ ℝ)
2322adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ ℝ)
24 simpll 786 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑒 ∈ ran (,))
25 xp1st 7089 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (1st𝑋) ∈ 𝑒)
26253ad2ant3 1077 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ 𝑒)
2726adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ 𝑒)
28 sxbrsiga.0 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
29 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3028, 29dya2icoseg2 29667 . . . . . . . 8 (((1st𝑋) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ (1st𝑋) ∈ 𝑒) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
3123, 24, 27, 30syl3anc 1318 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
32 xp2nd 7090 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
33323ad2ant1 1075 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ ℝ)
3433adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ ℝ)
35 simplr 788 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑓 ∈ ran (,))
36 xp2nd 7090 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (2nd𝑋) ∈ 𝑓)
37363ad2ant3 1077 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ 𝑓)
3837adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ 𝑓)
3928, 29dya2icoseg2 29667 . . . . . . . 8 (((2nd𝑋) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ (2nd𝑋) ∈ 𝑓) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
4034, 35, 38, 39syl3anc 1318 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
41 reeanv 3086 . . . . . . 7 (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) ↔ (∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓)))
4231, 40, 41sylanbrc 695 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))
43 eqid 2610 . . . . . . . . . . . 12 (𝑠 × 𝑡) = (𝑠 × 𝑡)
44 xpeq1 5052 . . . . . . . . . . . . . 14 (𝑢 = 𝑠 → (𝑢 × 𝑣) = (𝑠 × 𝑣))
4544eqeq2d 2620 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → ((𝑠 × 𝑡) = (𝑢 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑣)))
46 xpeq2 5053 . . . . . . . . . . . . . 14 (𝑣 = 𝑡 → (𝑠 × 𝑣) = (𝑠 × 𝑡))
4746eqeq2d 2620 . . . . . . . . . . . . 13 (𝑣 = 𝑡 → ((𝑠 × 𝑡) = (𝑠 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑡)))
4845, 47rspc2ev 3295 . . . . . . . . . . . 12 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼 ∧ (𝑠 × 𝑡) = (𝑠 × 𝑡)) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
4943, 48mp3an3 1405 . . . . . . . . . . 11 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
50 dya2ioc.2 . . . . . . . . . . . 12 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
51 vex 3176 . . . . . . . . . . . . 13 𝑢 ∈ V
52 vex 3176 . . . . . . . . . . . . 13 𝑣 ∈ V
5351, 52xpex 6860 . . . . . . . . . . . 12 (𝑢 × 𝑣) ∈ V
5450, 53elrnmpt2 6671 . . . . . . . . . . 11 ((𝑠 × 𝑡) ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
5549, 54sylibr 223 . . . . . . . . . 10 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → (𝑠 × 𝑡) ∈ ran 𝑅)
5655ad2antrl 760 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ∈ ran 𝑅)
57 xpss 5149 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (V × V)
58 simpl1 1057 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (ℝ × ℝ))
5957, 58sseldi 3566 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (V × V))
60 simprrl 800 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((1st𝑋) ∈ 𝑠𝑠𝑒))
6160simpld 474 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (1st𝑋) ∈ 𝑠)
62 simprrr 801 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((2nd𝑋) ∈ 𝑡𝑡𝑓))
6362simpld 474 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (2nd𝑋) ∈ 𝑡)
64 elxp7 7092 . . . . . . . . . . 11 (𝑋 ∈ (𝑠 × 𝑡) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)))
6564biimpri 217 . . . . . . . . . 10 ((𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)) → 𝑋 ∈ (𝑠 × 𝑡))
6659, 61, 63, 65syl12anc 1316 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (𝑠 × 𝑡))
6760simprd 478 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑠𝑒)
6862simprd 478 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑡𝑓)
69 xpss12 5148 . . . . . . . . . . 11 ((𝑠𝑒𝑡𝑓) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
7067, 68, 69syl2anc 691 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
71 simpl2 1058 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝐴 = (𝑒 × 𝑓))
7270, 71sseqtr4d 3605 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ 𝐴)
73 eleq2 2677 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑋𝑏𝑋 ∈ (𝑠 × 𝑡)))
74 sseq1 3589 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑏𝐴 ↔ (𝑠 × 𝑡) ⊆ 𝐴))
7573, 74anbi12d 743 . . . . . . . . . 10 (𝑏 = (𝑠 × 𝑡) → ((𝑋𝑏𝑏𝐴) ↔ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)))
7675rspcev 3282 . . . . . . . . 9 (((𝑠 × 𝑡) ∈ ran 𝑅 ∧ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7756, 66, 72, 76syl12anc 1316 . . . . . . . 8 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7877exp32 629 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ((((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))))
7978rexlimdvv 3019 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8020, 42, 79sylc 63 . . . . 5 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8119, 80sylan2 490 . . . 4 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8281ex 449 . . 3 ((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) → ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8382rexlimivv 3018 . 2 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8412, 14, 833syl 18 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540   × cxp 5036  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814  1c1 9816   + caddc 9818   / cdiv 10563  2c2 10947  cz 11254  (,)cioo 12046  [,)cico 12048  cexp 12722  topGenctg 15921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303
This theorem is referenced by:  dya2iocnei  29671
  Copyright terms: Public domain W3C validator