Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvxpaek Structured version   Visualization version   GIF version

Theorem dvxpaek 38830
 Description: Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvxpaek.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvxpaek.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvxpaek.a (𝜑𝐴 ∈ ℂ)
dvxpaek.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
dvxpaek (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥

Proof of Theorem dvxpaek
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvxpaek.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 9908 . . . 4 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 dvxpaek.x . . . . . . 7 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
51, 4dvdmsscn 38826 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
65adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑋 ⊆ ℂ)
7 simpr 476 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
86, 7sseldd 3569 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
9 dvxpaek.a . . . . 5 (𝜑𝐴 ∈ ℂ)
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
118, 10addcld 9938 . . 3 ((𝜑𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
12 1red 9934 . . . 4 ((𝜑𝑥𝑋) → 1 ∈ ℝ)
13 0red 9920 . . . 4 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
1412, 13readdcld 9948 . . 3 ((𝜑𝑥𝑋) → (1 + 0) ∈ ℝ)
15 simpr 476 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
16 dvxpaek.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
1716nnnn0d 11228 . . . . 5 (𝜑𝐾 ∈ ℕ0)
1817adantr 480 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝐾 ∈ ℕ0)
1915, 18expcld 12870 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐾) ∈ ℂ)
2018nn0cnd 11230 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝐾 ∈ ℂ)
21 nnm1nn0 11211 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2216, 21syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ0)
2322adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝐾 − 1) ∈ ℕ0)
2415, 23expcld 12870 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝐾 − 1)) ∈ ℂ)
2520, 24mulcld 9939 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝐾 · (𝑦↑(𝐾 − 1))) ∈ ℂ)
261, 4dvmptidg 38805 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝑥)) = (𝑥𝑋 ↦ 1))
271, 4, 9dvmptconst 38803 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
281, 8, 12, 26, 10, 13, 27dvmptadd 23529 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝑥 + 𝐴))) = (𝑥𝑋 ↦ (1 + 0)))
29 dvexp 23522 . . . 4 (𝐾 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1)))))
3016, 29syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1)))))
31 oveq1 6556 . . 3 (𝑦 = (𝑥 + 𝐴) → (𝑦𝐾) = ((𝑥 + 𝐴)↑𝐾))
32 oveq1 6556 . . . 4 (𝑦 = (𝑥 + 𝐴) → (𝑦↑(𝐾 − 1)) = ((𝑥 + 𝐴)↑(𝐾 − 1)))
3332oveq2d 6565 . . 3 (𝑦 = (𝑥 + 𝐴) → (𝐾 · (𝑦↑(𝐾 − 1))) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
341, 3, 11, 14, 19, 25, 28, 30, 31, 33dvmptco 23541 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))))
35 1p0e1 11010 . . . . . 6 (1 + 0) = 1
3635oveq2i 6560 . . . . 5 ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1)
3736a1i 11 . . . 4 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1))
3816nncnd 10913 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
3938adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ ℂ)
4022adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐾 − 1) ∈ ℕ0)
4111, 40expcld 12870 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾 − 1)) ∈ ℂ)
4239, 41mulcld 9939 . . . . 5 ((𝜑𝑥𝑋) → (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) ∈ ℂ)
4342mulid1d 9936 . . . 4 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
4437, 43eqtrd 2644 . . 3 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
4544mpteq2dva 4672 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
4634, 45eqtrd 2644 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  {cpr 4127   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ↑cexp 12722   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvnxpaek  38832
 Copyright terms: Public domain W3C validator