Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Visualization version   GIF version

Theorem dvrec 23524
 Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvrec
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 23478 . . . 4 (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ
2 ssid 3587 . . . . . . . 8 ℂ ⊆ ℂ
32a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
4 eldifsn 4260 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5 divcl 10570 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝐴 / 𝑥) ∈ ℂ)
653expb 1258 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (𝐴 / 𝑥) ∈ ℂ)
74, 6sylan2b 491 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑥) ∈ ℂ)
8 eqid 2610 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))
97, 8fmptd 6292 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
10 difssd 3700 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
113, 9, 10dvbss 23471 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) ⊆ (ℂ ∖ {0}))
12 simpr 476 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
13 eqid 2610 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413cnfldtop 22397 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
1513cnfldhaus 22398 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ Haus
16 0cn 9911 . . . . . . . . . . . . . 14 0 ∈ ℂ
1713cnfldtopon 22396 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1817toponunii 20547 . . . . . . . . . . . . . . 15 ℂ = (TopOpen‘ℂfld)
1918sncld 20985 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
2015, 16, 19mp2an 704 . . . . . . . . . . . . 13 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
2118cldopn 20645 . . . . . . . . . . . . 13 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
2220, 21ax-mp 5 . . . . . . . . . . . 12 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
23 isopn3i 20696 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0}))
2414, 22, 23mp2an 704 . . . . . . . . . . 11 ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0})
2512, 24syl6eleqr 2699 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})))
26 eldifi 3694 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
2726adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
2827sqvald 12867 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) = (𝑦 · 𝑦))
2928oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
30 simpl 472 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
31 eldifsni 4261 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
3231adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
3330, 27, 27, 32, 32divdiv1d 10711 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
3429, 33eqtr4d 2647 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
3534negeqd 10154 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
3630, 27, 32divcld 10680 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
3736, 27, 32divnegd 10693 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
3835, 37eqtrd 2644 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
3936negcld 10258 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / 𝑦) ∈ ℂ)
40 eqid 2610 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧))
4140cdivcncf 22528 . . . . . . . . . . . . . 14 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
4239, 41syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
43 oveq2 6557 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
4442, 12, 43cnmptlimc 23460 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
4538, 44eqeltrd 2688 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
46 cncff 22504 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4742, 46syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4847limcdif 23446 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
49 eldifi 3694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧 ∈ (ℂ ∖ {0}))
5049adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ (ℂ ∖ {0}))
5150eldifad 3552 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ ℂ)
5226ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ∈ ℂ)
5351, 52subcld 10271 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ∈ ℂ)
5436adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝐴 / 𝑦) ∈ ℂ)
55 eldifsni 4261 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ≠ 0)
5754, 51, 56divcld 10680 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
58 mulneg12 10347 . . . . . . . . . . . . . . . . . . 19 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5953, 57, 58syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
6052, 51, 57subdird 10366 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
6151, 52negsubdi2d 10287 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝑧𝑦) = (𝑦𝑧))
6261oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
63 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
64 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 / 𝑧) ∈ V
6563, 8, 64fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
6650, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
67 simpll 786 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝐴 ∈ ℂ)
6831ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ≠ 0)
6967, 52, 68divcan2d 10682 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
7069oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
7152, 54, 51, 56divassd 10715 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
7266, 70, 713eqtr2d 2650 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
73 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
74 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 / 𝑦) ∈ V
7573, 8, 74fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7675ad2antlr 759 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7754, 51, 56divcan2d 10682 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
7876, 77eqtr4d 2647 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
7972, 78oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
8060, 62, 793eqtr4d 2654 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)))
8154, 51, 56divnegd 10693 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
8281oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8359, 80, 823eqtr3d 2652 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8483oveq1d 6564 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
8554negcld 10258 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝐴 / 𝑦) ∈ ℂ)
8685, 51, 56divcld 10680 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
87 eldifsni 4261 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧𝑦)
8887adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧𝑦)
8951, 52, 88subne0d 10280 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ≠ 0)
9086, 53, 89divcan3d 10685 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
9184, 90eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
9291mpteq2dva 4672 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
93 difss 3699 . . . . . . . . . . . . . . 15 ((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0})
94 resmpt 5369 . . . . . . . . . . . . . . 15 (((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
9593, 94ax-mp 5 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧))
9692, 95syl6eqr 2662 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})))
9796oveq1d 6564 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
9848, 97eqtr4d 2647 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9945, 98eleqtrd 2690 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
10018restid 15917 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
10114, 100ax-mp 5 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
102101eqcomi 2619 . . . . . . . . . . 11 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
103 eqid 2610 . . . . . . . . . . 11 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
1042a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ℂ ⊆ ℂ)
1059adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
106 difssd 3700 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ⊆ ℂ)
107102, 13, 103, 104, 105, 106eldv 23468 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
10825, 99, 107mpbir2and 959 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
109 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
110 negex 10158 . . . . . . . . . 10 -(𝐴 / (𝑦↑2)) ∈ V
111109, 110breldm 5251 . . . . . . . . 9 (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
112108, 111syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
113112ex 449 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))))
114113ssrdv 3574 . . . . . 6 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
11511, 114eqssd 3585 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (ℂ ∖ {0}))
116115feq2d 5944 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ))
1171, 116mpbii 222 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ)
118 ffn 5958 . . 3 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
119117, 118syl 17 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
120 negex 10158 . . . 4 -(𝐴 / (𝑥↑2)) ∈ V
121120rgenw 2908 . . 3 𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V
122 eqid 2610 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))
123122fnmpt 5933 . . 3 (∀𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
124121, 123mp1i 13 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
125 ffun 5961 . . . . 5 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1261, 125mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
127 funbrfv 6144 . . . 4 (Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
128126, 108, 127sylc 63 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
129 oveq1 6556 . . . . . . 7 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
130129oveq2d 6565 . . . . . 6 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
131130negeqd 10154 . . . . 5 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
132131, 122, 110fvmpt 6191 . . . 4 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
133132adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
134128, 133eqtr4d 2647 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
135119, 124, 134eqfnfvd 6222 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   ↾ cres 5040  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815   · cmul 9820   − cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  ↑cexp 12722   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  Topctop 20517  Clsdccld 20630  intcnt 20631  Hauscha 20922  –cn→ccncf 22487   limℂ climc 23432   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvexp3  23545  dvtan  32630  dvrecg  38800
 Copyright terms: Public domain W3C validator