Step | Hyp | Ref
| Expression |
1 | | nn0uz 11598 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 1nn0 11185 |
. . 3
⊢ 1 ∈
ℕ0 |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → 1 ∈
ℕ0) |
4 | | ax-1cn 9873 |
. . . . 5
⊢ 1 ∈
ℂ |
5 | | nn0cn 11179 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℂ) |
7 | | nn0ex 11175 |
. . . . . . 7
⊢
ℕ0 ∈ V |
8 | 7 | mptex 6390 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) ∈ V |
9 | 8 | shftval4 13665 |
. . . . 5
⊢ ((1
∈ ℂ ∧ 𝑘
∈ ℂ) → (((𝑖
∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘))) |
10 | 4, 6, 9 | sylancr 694 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘))) |
11 | | addcom 10101 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝑘
∈ ℂ) → (1 + 𝑘) = (𝑘 + 1)) |
12 | 4, 6, 11 | sylancr 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 +
𝑘) = (𝑘 + 1)) |
13 | 12 | fveq2d 6107 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(𝑘 + 1))) |
14 | | peano2nn0 11210 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
15 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
16 | | id 22 |
. . . . . . . 8
⊢ (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1)) |
17 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 + 1) → ((𝐺‘𝑋)‘𝑖) = ((𝐺‘𝑋)‘(𝑘 + 1))) |
18 | 17 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝑖 = (𝑘 + 1) → (abs‘((𝐺‘𝑋)‘𝑖)) = (abs‘((𝐺‘𝑋)‘(𝑘 + 1)))) |
19 | 16, 18 | oveq12d 6567 |
. . . . . . 7
⊢ (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺‘𝑋)‘(𝑘 + 1))))) |
20 | | eqid 2610 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) |
21 | | ovex 6577 |
. . . . . . 7
⊢ ((𝑘 + 1) ·
(abs‘((𝐺‘𝑋)‘(𝑘 + 1)))) ∈ V |
22 | 19, 20, 21 | fvmpt 6191 |
. . . . . 6
⊢ ((𝑘 + 1) ∈ ℕ0
→ ((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺‘𝑋)‘(𝑘 + 1))))) |
23 | 15, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺‘𝑋)‘(𝑘 + 1))))) |
24 | | dvradcnv.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
25 | | dvradcnv.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
26 | 25 | pserval2 23969 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈
ℕ0) → ((𝐺‘𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) |
27 | 24, 14, 26 | syl2an 493 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) |
28 | 27 | fveq2d 6107 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐺‘𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) |
29 | 28 | oveq2d 6565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) ·
(abs‘((𝐺‘𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
30 | 23, 29 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
31 | 10, 13, 30 | 3eqtrd 2648 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
32 | 15 | nn0red 11229 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℝ) |
33 | | dvradcnv.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
34 | | ffvelrn 6265 |
. . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧
(𝑘 + 1) ∈
ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
35 | 33, 14, 34 | syl2an 493 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
36 | | expcl 12740 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈
ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ) |
37 | 24, 14, 36 | syl2an 493 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ) |
38 | 35, 37 | mulcld 9939 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ) |
39 | 38 | abscld 14023 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ) |
40 | 32, 39 | remulcld 9949 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ) |
41 | 31, 40 | eqeltrd 2688 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ) |
42 | | oveq1 6556 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) |
43 | 42 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1))) |
44 | 42, 43 | oveq12d 6567 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) |
45 | | oveq2 6557 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝑋↑𝑛) = (𝑋↑𝑘)) |
46 | 44, 45 | oveq12d 6567 |
. . . . 5
⊢ (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) |
47 | | dvradcnv.h |
. . . . 5
⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛))) |
48 | | ovex 6577 |
. . . . 5
⊢ (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)) ∈ V |
49 | 46, 47, 48 | fvmpt 6191 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐻‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) |
50 | 49 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) |
51 | 15 | nn0cnd 11230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℂ) |
52 | 51, 35 | mulcld 9939 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ) |
53 | | expcl 12740 |
. . . . 5
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑋↑𝑘) ∈
ℂ) |
54 | 24, 53 | sylan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑋↑𝑘) ∈ ℂ) |
55 | 52, 54 | mulcld 9939 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)) ∈ ℂ) |
56 | 50, 55 | eqeltrd 2688 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) ∈ ℂ) |
57 | | dvradcnv.r |
. . . . . . . 8
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
58 | | dvradcnv.l |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
59 | | id 22 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → 𝑖 = 𝑘) |
60 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝐺‘𝑋)‘𝑖) = ((𝐺‘𝑋)‘𝑘)) |
61 | 60 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (abs‘((𝐺‘𝑋)‘𝑖)) = (abs‘((𝐺‘𝑋)‘𝑘))) |
62 | 59, 61 | oveq12d 6567 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
63 | 62 | cbvmptv 4678 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺‘𝑋)‘𝑘)))) |
64 | 25, 33, 57, 24, 58, 63 | radcnvlt1 23976 |
. . . . . . 7
⊢ (𝜑 → (seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs
∘ (𝐺‘𝑋))) ∈ dom ⇝
)) |
65 | 64 | simpld 474 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))) ∈ dom ⇝ ) |
66 | | climdm 14133 |
. . . . . 6
⊢ (seq0( +
, (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + ,
(𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + ,
(𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))))) |
67 | 65, 66 | sylib 207 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + ,
(𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))))) |
68 | | 0z 11265 |
. . . . . 6
⊢ 0 ∈
ℤ |
69 | | neg1z 11290 |
. . . . . 6
⊢ -1 ∈
ℤ |
70 | 8 | isershft 14242 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + ,
(𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝
‘seq0( + , (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))))))) |
71 | 68, 69, 70 | mp2an 704 |
. . . . 5
⊢ (seq0( +
, (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + ,
(𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝
‘seq0( + , (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))))) |
72 | 67, 71 | sylib 207 |
. . . 4
⊢ (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝
‘seq0( + , (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))))) |
73 | | seqex 12665 |
. . . . 5
⊢ seq(0 +
-1)( + , ((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ V |
74 | | fvex 6113 |
. . . . 5
⊢ ( ⇝
‘seq0( + , (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))))) ∈ V |
75 | 73, 74 | breldm 5251 |
. . . 4
⊢ (seq(0 +
-1)( + , ((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝
‘seq0( + , (𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝
) |
76 | 72, 75 | syl 17 |
. . 3
⊢ (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝
) |
77 | | eqid 2610 |
. . . 4
⊢
(ℤ≥‘(0 + -1)) =
(ℤ≥‘(0 + -1)) |
78 | | neg1cn 11001 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
79 | 78 | addid2i 10103 |
. . . . . . 7
⊢ (0 + -1)
= -1 |
80 | | 0le1 10430 |
. . . . . . . 8
⊢ 0 ≤
1 |
81 | | 1re 9918 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
82 | | le0neg2 10416 |
. . . . . . . . 9
⊢ (1 ∈
ℝ → (0 ≤ 1 ↔ -1 ≤ 0)) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . 8
⊢ (0 ≤ 1
↔ -1 ≤ 0) |
84 | 80, 83 | mpbi 219 |
. . . . . . 7
⊢ -1 ≤
0 |
85 | 79, 84 | eqbrtri 4604 |
. . . . . 6
⊢ (0 + -1)
≤ 0 |
86 | 79, 69 | eqeltri 2684 |
. . . . . . 7
⊢ (0 + -1)
∈ ℤ |
87 | 86 | eluz1i 11571 |
. . . . . 6
⊢ (0 ∈
(ℤ≥‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1)
≤ 0)) |
88 | 68, 85, 87 | mpbir2an 957 |
. . . . 5
⊢ 0 ∈
(ℤ≥‘(0 + -1)) |
89 | 88 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
(ℤ≥‘(0 + -1))) |
90 | | eluzelcn 11575 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘(0 + -1)) → 𝑘 ∈ ℂ) |
91 | 90 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(0 +
-1))) → 𝑘 ∈
ℂ) |
92 | 4, 91, 9 | sylancr 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(0 +
-1))) → (((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘))) |
93 | | nn0re 11178 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
94 | 93 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℝ) |
95 | 25, 33, 24 | psergf 23970 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
96 | 95 | ffvelrnda 6267 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑖) ∈ ℂ) |
97 | 96 | abscld 14023 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(abs‘((𝐺‘𝑋)‘𝑖)) ∈ ℝ) |
98 | 94, 97 | remulcld 9949 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))) ∈ ℝ) |
99 | 98 | recnd 9947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))) ∈ ℂ) |
100 | 99, 20 | fmptd 6292 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))):ℕ0⟶ℂ) |
101 | 4, 90, 11 | sylancr 694 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1)) |
102 | | eluzp1p1 11589 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘(0 + -1)) → (𝑘 + 1) ∈
(ℤ≥‘((0 + -1) + 1))) |
103 | 79 | oveq1i 6559 |
. . . . . . . . . . 11
⊢ ((0 + -1)
+ 1) = (-1 + 1) |
104 | | 1pneg1e0 11006 |
. . . . . . . . . . . 12
⊢ (1 + -1)
= 0 |
105 | 4, 78, 104 | addcomli 10107 |
. . . . . . . . . . 11
⊢ (-1 + 1)
= 0 |
106 | 103, 105 | eqtri 2632 |
. . . . . . . . . 10
⊢ ((0 + -1)
+ 1) = 0 |
107 | 106 | fveq2i 6106 |
. . . . . . . . 9
⊢
(ℤ≥‘((0 + -1) + 1)) =
(ℤ≥‘0) |
108 | 1, 107 | eqtr4i 2635 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘((0 + -1) +
1)) |
109 | 102, 108 | syl6eleqr 2699 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘(0 + -1)) → (𝑘 + 1) ∈
ℕ0) |
110 | 101, 109 | eqeltrd 2688 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘(0 + -1)) → (1 + 𝑘) ∈
ℕ0) |
111 | | ffvelrn 6265 |
. . . . . 6
⊢ (((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))):ℕ0⟶ℂ ∧
(1 + 𝑘) ∈
ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ) |
112 | 100, 110,
111 | syl2an 493 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(0 +
-1))) → ((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ) |
113 | 92, 112 | eqeltrd 2688 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(0 +
-1))) → (((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ) |
114 | 77, 89, 113 | iserex 14235 |
. . 3
⊢ (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔
seq0( + , ((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝
)) |
115 | 76, 114 | mpbid 221 |
. 2
⊢ (𝜑 → seq0( + , ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝
) |
116 | | 1red 9934 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = 0) → 1 ∈
ℝ) |
117 | | df-ne 2782 |
. . . . . 6
⊢ (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0) |
118 | 117 | biimpri 217 |
. . . . 5
⊢ (¬
𝑋 = 0 → 𝑋 ≠ 0) |
119 | | absrpcl 13876 |
. . . . 5
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈
ℝ+) |
120 | 24, 118, 119 | syl2an 493 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈
ℝ+) |
121 | 120 | rprecred 11759 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈
ℝ) |
122 | 116, 121 | ifclda 4070 |
. 2
⊢ (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ) |
123 | | oveq1 6556 |
. . . . 5
⊢ (1 =
if(𝑋 = 0, 1, (1 /
(abs‘𝑋))) → (1
· ((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
124 | 123 | breq2d 4595 |
. . . 4
⊢ (1 =
if(𝑋 = 0, 1, (1 /
(abs‘𝑋))) →
((abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))) |
125 | | oveq1 6556 |
. . . . 5
⊢ ((1 /
(abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 /
(abs‘𝑋)) ·
((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
126 | 125 | breq2d 4595 |
. . . 4
⊢ ((1 /
(abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))) |
127 | | elnnuz 11600 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
128 | | nnnn0 11176 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
129 | 127, 128 | sylbir 224 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘1) → 𝑘 ∈ ℕ0) |
130 | 15 | nn0ge0d 11231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
(𝑘 + 1)) |
131 | 38 | absge0d 14031 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) |
132 | 32, 39, 130, 131 | mulge0d 10483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
133 | 129, 132 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 0 ≤ ((𝑘 + 1)
· (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
134 | 133 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) → 0 ≤
((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
135 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑋 = 0 → (𝑋↑𝑘) = (0↑𝑘)) |
136 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 𝑘 ∈
(ℤ≥‘1)) |
137 | 136, 127 | sylibr 223 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ 𝑘 ∈
ℕ) |
138 | 137 | 0expd 12886 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (0↑𝑘) =
0) |
139 | 135, 138 | sylan9eqr 2666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) → (𝑋↑𝑘) = 0) |
140 | 139 | oveq2d 6565 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) →
(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0)) |
141 | 52 | mul01d 10114 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0) |
142 | 129, 141 | sylan2 490 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (((𝑘 + 1) ·
(𝐴‘(𝑘 + 1))) · 0) =
0) |
143 | 142 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) →
(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0) |
144 | 140, 143 | eqtrd 2644 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) →
(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)) = 0) |
145 | 144 | abs00bd 13879 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) = 0) |
146 | 40 | recnd 9947 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ) |
147 | 146 | mulid2d 9937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1
· ((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
148 | 129, 147 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (1 · ((𝑘 + 1)
· (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
149 | 148 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) → (1
· ((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
150 | 134, 145,
149 | 3brtr4d 4615 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 = 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
151 | 55 | abscld 14023 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ∈ ℝ) |
152 | 51, 35, 54 | mulassd 9942 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)))) |
153 | 152 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
154 | 35, 54 | mulcld 9939 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)) ∈ ℂ) |
155 | 51, 154 | absmuld 14041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝑘 + 1)
· ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
156 | 32, 130 | absidd 14009 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(𝑘 + 1)) =
(𝑘 + 1)) |
157 | 156 | oveq1d 6564 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((abs‘(𝑘 + 1))
· (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
158 | 153, 155,
157 | 3eqtrd 2648 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
159 | | eqle 10018 |
. . . . . . . . 9
⊢
(((abs‘(((𝑘 +
1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ∈ ℝ ∧ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
160 | 151, 158,
159 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
161 | 160 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
162 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈
ℂ) |
163 | 119 | rpreccld 11758 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 /
(abs‘𝑋)) ∈
ℝ+) |
164 | 162, 163 | sylan 487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 /
(abs‘𝑋)) ∈
ℝ+) |
165 | 164 | rpcnd 11750 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 /
(abs‘𝑋)) ∈
ℂ) |
166 | 51 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈
ℂ) |
167 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ) |
168 | 167 | recnd 9947 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ) |
169 | 165, 166,
168 | mul12d 10124 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 /
(abs‘𝑋)) ·
((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
170 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ) |
171 | 24 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈
ℂ) |
172 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0) |
173 | 170, 171,
172 | absdivd 14042 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋))) |
174 | 35 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
175 | 37 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ) |
176 | 174, 175,
171, 172 | divassd 10715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋))) |
177 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈
ℂ) |
178 | | pncan 10166 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
179 | 177, 4, 178 | sylancl 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘) |
180 | 179 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋↑𝑘)) |
181 | 15 | nn0zd 11356 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℤ) |
182 | 181 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈
ℤ) |
183 | 171, 172,
182 | expm1d 12880 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋)) |
184 | 180, 183 | eqtr3d 2646 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋)) |
185 | 184 | oveq2d 6565 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋))) |
186 | 176, 185 | eqtr4d 2647 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))) |
187 | 186 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)))) |
188 | 24 | abscld 14023 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ) |
189 | 188 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈
ℝ) |
190 | 189 | recnd 9947 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈
ℂ) |
191 | 162, 119 | sylan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈
ℝ+) |
192 | 191 | rpne0d 11753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0) |
193 | 168, 190,
192 | divrec2d 10684 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) |
194 | 173, 187,
193 | 3eqtr3rd 2653 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 /
(abs‘𝑋)) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘)))) |
195 | 194 | oveq2d 6565 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 /
(abs‘𝑋)) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
196 | 169, 195 | eqtrd 2644 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 /
(abs‘𝑋)) ·
((𝑘 + 1) ·
(abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑𝑘))))) |
197 | 161, 196 | breqtrrd 4611 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
198 | 129, 197 | sylanl2 681 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ 𝑋 ≠ 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
199 | 117, 198 | sylan2br 492 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
∧ ¬ 𝑋 = 0) →
(abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
200 | 124, 126,
150, 199 | ifbothda 4073 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘(((𝑘 + 1)
· (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
201 | 50 | fveq2d 6107 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(abs‘(𝐻‘𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)))) |
202 | 129, 201 | sylan2 490 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘(𝐻‘𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋↑𝑘)))) |
203 | 31 | oveq2d 6565 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0
↦ (𝑖 ·
(abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
204 | 129, 203 | sylan2 490 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (if(𝑋 = 0, 1, (1 /
(abs‘𝑋))) ·
(((𝑖 ∈
ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))) |
205 | 200, 202,
204 | 3brtr4d 4615 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (abs‘(𝐻‘𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺‘𝑋)‘𝑖)))) shift -1)‘𝑘))) |
206 | 1, 3, 41, 56, 115, 122, 205 | cvgcmpce 14391 |
1
⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝
) |