Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprod Structured version   Visualization version   GIF version

Theorem dvnprod 38839
Description: The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprod.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprod.t (𝜑𝑇 ∈ Fin)
dvnprod.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprod.n (𝜑𝑁 ∈ ℕ0)
dvnprod.dvnh ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
dvnprod.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprod.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprod (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐻,𝑐,𝑛,𝑡,𝑥   𝑘,𝐻,𝑛,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝑘,𝑁   𝑆,𝑐,𝑛,𝑡,𝑥   𝑆,𝑘   𝑇,𝑐,𝑛,𝑡,𝑥   𝑇,𝑘   𝑘,𝑋,𝑛,𝑡,𝑥   𝜑,𝑘,𝑛,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑡,𝑘,𝑛)   𝐹(𝑥,𝑡,𝑘,𝑛,𝑐)   𝑋(𝑐)

Proof of Theorem dvnprod
Dummy variables 𝑒 𝑠 𝑟 𝑑 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvnprod.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvnprod.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 dvnprod.t . . 3 (𝜑𝑇 ∈ Fin)
4 dvnprod.h . . 3 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
5 dvnprod.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 dvnprod.dvnh . . 3 ((𝜑𝑡𝑇𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑘):𝑋⟶ℂ)
7 dvnprod.f . . 3 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
8 fveq2 6103 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑑𝑢) = (𝑑𝑡))
98cbvsumv 14274 . . . . . . . . . . 11 Σ𝑢𝑟 (𝑑𝑢) = Σ𝑡𝑟 (𝑑𝑡)
109eqeq1i 2615 . . . . . . . . . 10 𝑢𝑟 (𝑑𝑢) = 𝑚 ↔ Σ𝑡𝑟 (𝑑𝑡) = 𝑚)
1110a1i 11 . . . . . . . . 9 (𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) → (Σ𝑢𝑟 (𝑑𝑢) = 𝑚 ↔ Σ𝑡𝑟 (𝑑𝑡) = 𝑚))
1211rabbiia 3161 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚}
13 fveq1 6102 . . . . . . . . . . 11 (𝑑 = 𝑒 → (𝑑𝑡) = (𝑒𝑡))
1413sumeq2ad 38632 . . . . . . . . . 10 (𝑑 = 𝑒 → Σ𝑡𝑟 (𝑑𝑡) = Σ𝑡𝑟 (𝑒𝑡))
1514eqeq1d 2612 . . . . . . . . 9 (𝑑 = 𝑒 → (Σ𝑡𝑟 (𝑑𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑚))
1615cbvrabv 3172 . . . . . . . 8 {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑑𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1712, 16eqtri 2632 . . . . . . 7 {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}
1817mpteq2i 4669 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚})
19 eqeq2 2621 . . . . . . . . 9 (𝑚 = 𝑛 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑚 ↔ Σ𝑡𝑟 (𝑒𝑡) = 𝑛))
2019rabbidv 3164 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
21 oveq2 6557 . . . . . . . . . 10 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
2221oveq1d 6564 . . . . . . . . 9 (𝑚 = 𝑛 → ((0...𝑚) ↑𝑚 𝑟) = ((0...𝑛) ↑𝑚 𝑟))
23 rabeq 3166 . . . . . . . . 9 (((0...𝑚) ↑𝑚 𝑟) = ((0...𝑛) ↑𝑚 𝑟) → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2422, 23syl 17 . . . . . . . 8 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2520, 24eqtrd 2644 . . . . . . 7 (𝑚 = 𝑛 → {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2625cbvmptv 4678 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2718, 26eqtri 2632 . . . . 5 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})
2827mpteq2i 4669 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}))
29 sumeq1 14267 . . . . . . . . 9 (𝑟 = 𝑠 → Σ𝑡𝑟 (𝑒𝑡) = Σ𝑡𝑠 (𝑒𝑡))
3029eqeq1d 2612 . . . . . . . 8 (𝑟 = 𝑠 → (Σ𝑡𝑟 (𝑒𝑡) = 𝑛 ↔ Σ𝑡𝑠 (𝑒𝑡) = 𝑛))
3130rabbidv 3164 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
32 oveq2 6557 . . . . . . . 8 (𝑟 = 𝑠 → ((0...𝑛) ↑𝑚 𝑟) = ((0...𝑛) ↑𝑚 𝑠))
33 rabeq 3166 . . . . . . . 8 (((0...𝑛) ↑𝑚 𝑟) = ((0...𝑛) ↑𝑚 𝑠) → {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3432, 33syl 17 . . . . . . 7 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3531, 34eqtrd 2644 . . . . . 6 (𝑟 = 𝑠 → {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛})
3635mpteq2dv 4673 . . . . 5 (𝑟 = 𝑠 → (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3736cbvmptv 4678 . . . 4 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑟) ∣ Σ𝑡𝑟 (𝑒𝑡) = 𝑛})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
3828, 37eqtri 2632 . . 3 (𝑟 ∈ 𝒫 𝑇 ↦ (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 𝑟) ∣ Σ𝑢𝑟 (𝑑𝑢) = 𝑚})) = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡𝑠 (𝑒𝑡) = 𝑛}))
39 dvnprod.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
40 fveq1 6102 . . . . . . . 8 (𝑐 = 𝑒 → (𝑐𝑡) = (𝑒𝑡))
4140sumeq2ad 38632 . . . . . . 7 (𝑐 = 𝑒 → Σ𝑡𝑇 (𝑐𝑡) = Σ𝑡𝑇 (𝑒𝑡))
4241eqeq1d 2612 . . . . . 6 (𝑐 = 𝑒 → (Σ𝑡𝑇 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑒𝑡) = 𝑛))
4342cbvrabv 3172 . . . . 5 {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛} = {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛}
4443mpteq2i 4669 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
4539, 44eqtri 2632 . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑛) ↑𝑚 𝑇) ∣ Σ𝑡𝑇 (𝑒𝑡) = 𝑛})
461, 2, 3, 4, 5, 6, 7, 38, 45dvnprodlem3 38838 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))))
47 fveq1 6102 . . . . . . . . . 10 (𝑒 = 𝑐 → (𝑒𝑡) = (𝑐𝑡))
4847fveq2d 6107 . . . . . . . . 9 (𝑒 = 𝑐 → (!‘(𝑒𝑡)) = (!‘(𝑐𝑡)))
4948prodeq2ad 38659 . . . . . . . 8 (𝑒 = 𝑐 → ∏𝑡𝑇 (!‘(𝑒𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
5049oveq2d 6565 . . . . . . 7 (𝑒 = 𝑐 → ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
5147fveq2d 6107 . . . . . . . . 9 (𝑒 = 𝑐 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡)) = ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)))
5251fveq1d 6105 . . . . . . . 8 (𝑒 = 𝑐 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5352prodeq2ad 38659 . . . . . . 7 (𝑒 = 𝑐 → ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5450, 53oveq12d 6567 . . . . . 6 (𝑒 = 𝑐 → (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5554cbvsumv 14274 . . . . 5 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
56 eqid 2610 . . . . 5 Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5755, 56eqtri 2632 . . . 4 Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
5857mpteq2i 4669 . . 3 (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
5958a1i 11 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑒 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑒𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑒𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
6046, 59eqtrd 2644 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  𝒫 cpw 4108  {cpr 4127  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  cc 9813  cr 9814  0cc0 9815   · cmul 9820   / cdiv 10563  0cn0 11169  ...cfz 12197  !cfa 12922  Σcsu 14264  cprod 14474  t crest 15904  TopOpenctopn 15905  fldccnfld 19567   D𝑛 cdvn 23434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-prod 14475  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-dvn 23438
This theorem is referenced by:  etransclem29  39156
  Copyright terms: Public domain W3C validator