Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Visualization version   GIF version

Theorem dvlipcn 23561
 Description: A complex function with derivative bounded by 𝑀 on an open ball is Lipschitz continuous with Lipschitz constant equal to 𝑀. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x (𝜑𝑋 ⊆ ℂ)
dvlipcn.f (𝜑𝐹:𝑋⟶ℂ)
dvlipcn.a (𝜑𝐴 ∈ ℂ)
dvlipcn.r (𝜑𝑅 ∈ ℝ*)
dvlipcn.b 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
dvlipcn.d (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
dvlipcn.m (𝜑𝑀 ∈ ℝ)
dvlipcn.l ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlipcn ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem dvlipcn
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12162 . . 3 1 ∈ (0[,]1)
2 0elunit 12161 . . 3 0 ∈ (0[,]1)
3 0red 9920 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 0 ∈ ℝ)
4 1red 9934 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℝ)
5 dvlipcn.d . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
6 ssid 3587 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
76a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
8 dvlipcn.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
9 dvlipcn.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ ℂ)
107, 8, 9dvbss 23471 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋)
115, 10sstrd 3578 . . . . . . . . . . . . 13 (𝜑𝐵𝑋)
1211, 9sstrd 3578 . . . . . . . . . . . 12 (𝜑𝐵 ⊆ ℂ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵 ⊆ ℂ)
14 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
1513, 14sseldd 3569 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌 ∈ ℂ)
1615adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ)
17 unitssre 12190 . . . . . . . . . . 11 (0[,]1) ⊆ ℝ
18 ax-resscn 9872 . . . . . . . . . . 11 ℝ ⊆ ℂ
1917, 18sstri 3577 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
20 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
2119, 20sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
2216, 21mulcomd 9940 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌))
23 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
2413, 23sseldd 3569 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍 ∈ ℂ)
2524adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ)
26 iirev 22536 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
2726adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ (0[,]1))
2819, 27sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2925, 28mulcomd 9940 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍))
3022, 29oveq12d 6567 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)))
31 dvlipcn.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3231ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
33 dvlipcn.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
3433ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ*)
3514adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌𝐵)
3623adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍𝐵)
37 dvlipcn.b . . . . . . . . 9 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
3837blcvx 22409 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝑌𝐵𝑍𝐵𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3932, 34, 35, 36, 20, 38syl23anc 1325 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
4030, 39eqeltrd 2688 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
41 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
428, 11fssresd 5984 . . . . . . . . 9 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4342feqmptd 6159 . . . . . . . 8 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)))
44 fvres 6117 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
4544mpteq2ia 4668 . . . . . . . 8 (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)) = (𝑧𝐵 ↦ (𝐹𝑧))
4643, 45syl6eq 2660 . . . . . . 7 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
48 fveq2 6103 . . . . . 6 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
4940, 41, 47, 48fmptco 6303 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
50 eqid 2610 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))
5140, 50fmptd 6292 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)
52 eqid 2610 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5352addcn 22476 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5453a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
55 cncfmptc 22522 . . . . . . . . . . . 12 ((𝑌 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5619, 6, 55mp3an23 1408 . . . . . . . . . . 11 (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5715, 56syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
58 cncfmptid 22523 . . . . . . . . . . . 12 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
5919, 6, 58mp2an 704 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)
6059a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
6157, 60mulcncf 23023 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
62 cncfmptc 22522 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6319, 6, 62mp3an23 1408 . . . . . . . . . . 11 (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6424, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6552subcn 22477 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6665a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
67 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
68 cncfmptc 22522 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
6967, 19, 6, 68mp3an 1416 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ)
7069a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
7152, 66, 70, 60cncfmpt2f 22525 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ))
7264, 71mulcncf 23023 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ))
7352, 54, 61, 72cncfmpt2f 22525 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ))
74 cncffvrn 22509 . . . . . . . 8 ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7513, 73, 74syl2anc 691 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7651, 75mpbird 246 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵))
776a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ⊆ ℂ)
7842adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵):𝐵⟶ℂ)
7952cnfldtop 22397 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
8052cnfldtopon 22396 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8180toponunii 20547 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
8281restid 15917 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
8379, 82ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
8483eqcomi 2619 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8552, 84dvres 23481 . . . . . . . . . . . 12 (((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
867, 8, 9, 12, 85syl22anc 1319 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
87 cnxmet 22386 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
8887a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
8952cnfldtopn 22395 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
9089blopn 22115 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9188, 31, 33, 90syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9237, 91syl5eqel 2692 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (TopOpen‘ℂfld))
93 isopn3i 20696 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9479, 92, 93sylancr 694 . . . . . . . . . . . 12 (𝜑 → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9594reseq2d 5317 . . . . . . . . . . 11 (𝜑 → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9686, 95eqtrd 2644 . . . . . . . . . 10 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9796dmeqd 5248 . . . . . . . . 9 (𝜑 → dom (ℂ D (𝐹𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵))
98 dmres 5339 . . . . . . . . . 10 dom ((ℂ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℂ D 𝐹))
99 df-ss 3554 . . . . . . . . . . 11 (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
1005, 99sylib 207 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
10198, 100syl5eq 2656 . . . . . . . . 9 (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵)
10297, 101eqtrd 2644 . . . . . . . 8 (𝜑 → dom (ℂ D (𝐹𝐵)) = 𝐵)
103102adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℂ D (𝐹𝐵)) = 𝐵)
104 dvcn 23490 . . . . . . 7 (((ℂ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10577, 78, 13, 103, 104syl31anc 1321 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10676, 105cncfco 22518 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10749, 106eqeltrrd 2689 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10818a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ⊆ ℂ)
10917a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0[,]1) ⊆ ℝ)
1108ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ)
11111ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵𝑋)
112111, 40sseldd 3569 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋)
113110, 112ffvelrnd 6268 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
11452tgioo2 22414 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
115 1re 9918 . . . . . . . . 9 1 ∈ ℝ
116 iccntr 22432 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
1173, 115, 116sylancl 693 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
118108, 109, 113, 114, 52, 117dvmptntr 23540 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))))
119 reelprrecn 9907 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
120119a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ∈ {ℝ, ℂ})
121 cnelprrecn 9908 . . . . . . . . 9 ℂ ∈ {ℝ, ℂ}
122121a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ∈ {ℝ, ℂ})
123 ioossicc 12130 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
124123sseli 3564 . . . . . . . . 9 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
125124, 40sylan2 490 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
12615, 24subcld 10271 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌𝑍) ∈ ℂ)
127126adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌𝑍) ∈ ℂ)
12811adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵𝑋)
129128sselda 3568 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → 𝑧𝑋)
1308adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐹:𝑋⟶ℂ)
131130ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
132129, 131syldan 486 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
133 fvex 6113 . . . . . . . . 9 ((ℂ D 𝐹)‘𝑧) ∈ V
134133a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V)
13515adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ)
136124, 21sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
137135, 136mulcld 9939 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ)
138 1red 9934 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
139 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
140139recnd 9947 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
141 1red 9934 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
142120dvmptid 23526 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
143 ioossre 12106 . . . . . . . . . . . . . 14 (0(,)1) ⊆ ℝ
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ⊆ ℝ)
145 iooretop 22379 . . . . . . . . . . . . . 14 (0(,)1) ∈ (topGen‘ran (,))
146145a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ∈ (topGen‘ran (,)))
147120, 140, 141, 142, 144, 114, 52, 146dvmptres 23532 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1))
148120, 136, 138, 147, 15dvmptcmul 23533 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)))
14915mulid1d 9936 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 1) = 𝑌)
150149mpteq2dv 4673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
151148, 150eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
15224adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ)
153124, 28sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
154152, 153mulcld 9939 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ)
155 negex 10158 . . . . . . . . . . 11 -𝑍 ∈ V
156155a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V)
157 negex 10158 . . . . . . . . . . . . 13 -1 ∈ V
158157a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈ V)
159 1cnd 9935 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
160 0red 9920 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈ ℝ)
161 1cnd 9935 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℂ)
162 0red 9920 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
163 1cnd 9935 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℂ)
164120, 163dvmptc 23527 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
165120, 161, 162, 164, 144, 114, 52, 146dvmptres 23532 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦ 0))
166120, 159, 160, 165, 136, 138, 147dvmptsub 23536 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 − 1)))
167 df-neg 10148 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168167mpteq2i 4669 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ -1) = (𝑡 ∈ (0(,)1) ↦ (0 − 1))
169166, 168syl6eqr 2662 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1))
170120, 153, 158, 169, 24dvmptcmul 23533 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)))
171 neg1cn 11001 . . . . . . . . . . . . . 14 -1 ∈ ℂ
172 mulcom 9901 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑍 · -1) = (-1 · 𝑍))
17324, 171, 172sylancl 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = (-1 · 𝑍))
17424mulm1d 10361 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (-1 · 𝑍) = -𝑍)
175173, 174eqtrd 2644 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = -𝑍)
176175mpteq2dv 4673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
177170, 176eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
178120, 137, 135, 151, 154, 156, 177dvmptadd 23529 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)))
17915, 24negsubd 10277 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + -𝑍) = (𝑌𝑍))
180179mpteq2dv 4673 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
181178, 180eqtrd 2644 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
1829adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑋 ⊆ ℂ)
18377, 130, 182, 13, 85syl22anc 1319 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
18494adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
185184reseq2d 5317 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
186183, 185eqtrd 2644 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
18747oveq2d 6565 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))))
188 dvfcn 23478 . . . . . . . . . . . . 13 (ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ
189103feq2d 5944 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ ↔ (ℂ D (𝐹𝐵)):𝐵⟶ℂ))
190188, 189mpbii 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)):𝐵⟶ℂ)
191186feq1d 5943 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ))
192190, 191mpbid 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)
193192feqmptd 6159 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)))
194 fvres 6117 . . . . . . . . . . 11 (𝑧𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧))
195194mpteq2ia 4668 . . . . . . . . . 10 (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧))
196193, 195syl6eq 2660 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
197186, 187, 1963eqtr3d 2652 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
198 fveq2 6103 . . . . . . . 8 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
199120, 122, 125, 127, 132, 134, 181, 197, 48, 198dvmptco 23541 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
200118, 199eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
201200dmeqd 5248 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
202 ovex 6577 . . . . . . 7 (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
203202rgenw 2908 . . . . . 6 𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
204 dmmptg 5549 . . . . . 6 (∀𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
205203, 204mp1i 13 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
206201, 205eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1))
207 dvlipcn.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
208207adantr 480 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑀 ∈ ℝ)
209126abscld 14023 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(𝑌𝑍)) ∈ ℝ)
210208, 209remulcld 9949 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℝ)
211200fveq1d 6105 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡))
212 eqid 2610 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
213212fvmpt2 6200 . . . . . . . . . . . 12 ((𝑡 ∈ (0(,)1) ∧ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
214202, 213mpan2 703 . . . . . . . . . . 11 (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
215211, 214sylan9eq 2664 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
216215fveq2d 6107 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
217 dvfcn 23478 . . . . . . . . . . 11 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2185ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹))
219218, 125sseldd 3569 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹))
220 ffvelrn 6265 . . . . . . . . . . 11 (((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
221217, 219, 220sylancr 694 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
222221, 127absmuld 14041 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
223216, 222eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
224221abscld 14023 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ)
225207ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
226127abscld 14023 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌𝑍)) ∈ ℝ)
227127absge0d 14031 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(𝑌𝑍)))
228 dvlipcn.l . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
229228ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
230 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((ℂ D 𝐹)‘𝑥) = ((ℂ D 𝐹)‘𝑦))
231230fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦)))
232231breq1d 4593 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀))
233232cbvralv 3147 . . . . . . . . . . . 12 (∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
234229, 233sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
235234ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
236 fveq2 6103 . . . . . . . . . . . . 13 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑦) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
237236fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
238237breq1d 4593 . . . . . . . . . . 11 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
239238rspcv 3278 . . . . . . . . . 10 (((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵 → (∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
240125, 235, 239sylc 63 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)
241224, 225, 226, 227, 240lemul1ad 10842 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
242223, 241eqbrtrd 4605 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
243242ralrimiva 2949 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
244 nfv 1830 . . . . . . 7 𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
245 nfcv 2751 . . . . . . . . 9 𝑡abs
246 nfcv 2751 . . . . . . . . . . 11 𝑡
247 nfcv 2751 . . . . . . . . . . 11 𝑡 D
248 nfmpt1 4675 . . . . . . . . . . 11 𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
249246, 247, 248nfov 6575 . . . . . . . . . 10 𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
250 nfcv 2751 . . . . . . . . . 10 𝑡𝑧
251249, 250nffv 6110 . . . . . . . . 9 𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)
252245, 251nffv 6110 . . . . . . . 8 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
253 nfcv 2751 . . . . . . . 8 𝑡
254 nfcv 2751 . . . . . . . 8 𝑡(𝑀 · (abs‘(𝑌𝑍)))
255252, 253, 254nfbr 4629 . . . . . . 7 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
256 fveq2 6103 . . . . . . . . 9 (𝑡 = 𝑧 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
257256fveq2d 6107 . . . . . . . 8 (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)))
258257breq1d 4593 . . . . . . 7 (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
259244, 255, 258cbvral 3143 . . . . . 6 (∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
260243, 259sylib 207 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
261260r19.21bi 2916 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
2623, 4, 107, 206, 210, 261dvlip 23560 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
2631, 2, 262mpanr12 717 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
264 oveq2 6557 . . . . . . . . 9 (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1))
265 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
266 1m1e0 10966 . . . . . . . . . . 11 (1 − 1) = 0
267265, 266syl6eq 2660 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
268267oveq2d 6565 . . . . . . . . 9 (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0))
269264, 268oveq12d 6567 . . . . . . . 8 (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0)))
270269fveq2d 6107 . . . . . . 7 (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
271 eqid 2610 . . . . . . 7 (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
272 fvex 6113 . . . . . . 7 (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V
273270, 271, 272fvmpt 6191 . . . . . 6 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
2741, 273ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))
27524mul01d 10114 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 0) = 0)
276149, 275oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0))
27715addid1d 10115 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + 0) = 𝑌)
278276, 277eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌)
279278fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹𝑌))
280274, 279syl5eq 2656 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹𝑌))
281 oveq2 6557 . . . . . . . . 9 (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0))
282 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
283 1m0e1 11008 . . . . . . . . . . 11 (1 − 0) = 1
284282, 283syl6eq 2660 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
285284oveq2d 6565 . . . . . . . . 9 (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1))
286281, 285oveq12d 6567 . . . . . . . 8 (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1)))
287286fveq2d 6107 . . . . . . 7 (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
288 fvex 6113 . . . . . . 7 (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V
289287, 271, 288fvmpt 6191 . . . . . 6 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
2902, 289ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))
29115mul01d 10114 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 0) = 0)
29224mulid1d 9936 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 1) = 𝑍)
293291, 292oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍))
29424addid2d 10116 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0 + 𝑍) = 𝑍)
295293, 294eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍)
296295fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹𝑍))
297290, 296syl5eq 2656 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹𝑍))
298280, 297oveq12d 6567 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹𝑌) − (𝐹𝑍)))
299298fveq2d 6107 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
300283fveq2i 6106 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
301 abs1 13885 . . . . 5 (abs‘1) = 1
302300, 301eqtri 2632 . . . 4 (abs‘(1 − 0)) = 1
303302oveq2i 6560 . . 3 ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = ((𝑀 · (abs‘(𝑌𝑍))) · 1)
304210recnd 9947 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℂ)
305304mulid1d 9936 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · 1) = (𝑀 · (abs‘(𝑌𝑍))))
306303, 305syl5eq 2656 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = (𝑀 · (abs‘(𝑌𝑍))))
307263, 299, 3063brtr3d 4614 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℝ*cxr 9952   ≤ cle 9954   − cmin 10145  -cneg 10146  (,)cioo 12046  [,]cicc 12049  abscabs 13822   ↾t crest 15904  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  ℂfldccnfld 19567  Topctop 20517  intcnt 20631   Cn ccn 20838   ×t ctx 21173  –cn→ccncf 22487   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvlip2  23562  dv11cn  23568
 Copyright terms: Public domain W3C validator