MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Visualization version   GIF version

Theorem dvlipcn 23561
Description: A complex function with derivative bounded by 𝑀 on an open ball is Lipschitz continuous with Lipschitz constant equal to 𝑀. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x (𝜑𝑋 ⊆ ℂ)
dvlipcn.f (𝜑𝐹:𝑋⟶ℂ)
dvlipcn.a (𝜑𝐴 ∈ ℂ)
dvlipcn.r (𝜑𝑅 ∈ ℝ*)
dvlipcn.b 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
dvlipcn.d (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
dvlipcn.m (𝜑𝑀 ∈ ℝ)
dvlipcn.l ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlipcn ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem dvlipcn
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12162 . . 3 1 ∈ (0[,]1)
2 0elunit 12161 . . 3 0 ∈ (0[,]1)
3 0red 9920 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 0 ∈ ℝ)
4 1red 9934 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℝ)
5 dvlipcn.d . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
6 ssid 3587 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
76a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
8 dvlipcn.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
9 dvlipcn.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ ℂ)
107, 8, 9dvbss 23471 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋)
115, 10sstrd 3578 . . . . . . . . . . . . 13 (𝜑𝐵𝑋)
1211, 9sstrd 3578 . . . . . . . . . . . 12 (𝜑𝐵 ⊆ ℂ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵 ⊆ ℂ)
14 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
1513, 14sseldd 3569 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌 ∈ ℂ)
1615adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ)
17 unitssre 12190 . . . . . . . . . . 11 (0[,]1) ⊆ ℝ
18 ax-resscn 9872 . . . . . . . . . . 11 ℝ ⊆ ℂ
1917, 18sstri 3577 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
20 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
2119, 20sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
2216, 21mulcomd 9940 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌))
23 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
2413, 23sseldd 3569 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍 ∈ ℂ)
2524adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ)
26 iirev 22536 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
2726adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ (0[,]1))
2819, 27sseldi 3566 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2925, 28mulcomd 9940 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍))
3022, 29oveq12d 6567 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)))
31 dvlipcn.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3231ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
33 dvlipcn.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
3433ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ*)
3514adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌𝐵)
3623adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍𝐵)
37 dvlipcn.b . . . . . . . . 9 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
3837blcvx 22409 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝑌𝐵𝑍𝐵𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3932, 34, 35, 36, 20, 38syl23anc 1325 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
4030, 39eqeltrd 2688 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
41 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
428, 11fssresd 5984 . . . . . . . . 9 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4342feqmptd 6159 . . . . . . . 8 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)))
44 fvres 6117 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
4544mpteq2ia 4668 . . . . . . . 8 (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)) = (𝑧𝐵 ↦ (𝐹𝑧))
4643, 45syl6eq 2660 . . . . . . 7 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
4746adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
48 fveq2 6103 . . . . . 6 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
4940, 41, 47, 48fmptco 6303 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
50 eqid 2610 . . . . . . . 8 (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))
5140, 50fmptd 6292 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)
52 eqid 2610 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5352addcn 22476 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5453a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
55 cncfmptc 22522 . . . . . . . . . . . 12 ((𝑌 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5619, 6, 55mp3an23 1408 . . . . . . . . . . 11 (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5715, 56syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
58 cncfmptid 22523 . . . . . . . . . . . 12 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
5919, 6, 58mp2an 704 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)
6059a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
6157, 60mulcncf 23023 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
62 cncfmptc 22522 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6319, 6, 62mp3an23 1408 . . . . . . . . . . 11 (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6424, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6552subcn 22477 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6665a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
67 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
68 cncfmptc 22522 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
6967, 19, 6, 68mp3an 1416 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ)
7069a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
7152, 66, 70, 60cncfmpt2f 22525 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ))
7264, 71mulcncf 23023 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ))
7352, 54, 61, 72cncfmpt2f 22525 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ))
74 cncffvrn 22509 . . . . . . . 8 ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7513, 73, 74syl2anc 691 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7651, 75mpbird 246 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵))
776a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ⊆ ℂ)
7842adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵):𝐵⟶ℂ)
7952cnfldtop 22397 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
8052cnfldtopon 22396 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8180toponunii 20547 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
8281restid 15917 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
8379, 82ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
8483eqcomi 2619 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8552, 84dvres 23481 . . . . . . . . . . . 12 (((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
867, 8, 9, 12, 85syl22anc 1319 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
87 cnxmet 22386 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
8887a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
8952cnfldtopn 22395 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
9089blopn 22115 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9188, 31, 33, 90syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
9237, 91syl5eqel 2692 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (TopOpen‘ℂfld))
93 isopn3i 20696 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9479, 92, 93sylancr 694 . . . . . . . . . . . 12 (𝜑 → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9594reseq2d 5317 . . . . . . . . . . 11 (𝜑 → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9686, 95eqtrd 2644 . . . . . . . . . 10 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9796dmeqd 5248 . . . . . . . . 9 (𝜑 → dom (ℂ D (𝐹𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵))
98 dmres 5339 . . . . . . . . . 10 dom ((ℂ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℂ D 𝐹))
99 df-ss 3554 . . . . . . . . . . 11 (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
1005, 99sylib 207 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
10198, 100syl5eq 2656 . . . . . . . . 9 (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵)
10297, 101eqtrd 2644 . . . . . . . 8 (𝜑 → dom (ℂ D (𝐹𝐵)) = 𝐵)
103102adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℂ D (𝐹𝐵)) = 𝐵)
104 dvcn 23490 . . . . . . 7 (((ℂ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10577, 78, 13, 103, 104syl31anc 1321 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10676, 105cncfco 22518 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10749, 106eqeltrrd 2689 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10818a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ⊆ ℂ)
10917a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0[,]1) ⊆ ℝ)
1108ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ)
11111ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵𝑋)
112111, 40sseldd 3569 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋)
113110, 112ffvelrnd 6268 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
11452tgioo2 22414 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
115 1re 9918 . . . . . . . . 9 1 ∈ ℝ
116 iccntr 22432 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
1173, 115, 116sylancl 693 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
118108, 109, 113, 114, 52, 117dvmptntr 23540 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))))
119 reelprrecn 9907 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
120119a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ∈ {ℝ, ℂ})
121 cnelprrecn 9908 . . . . . . . . 9 ℂ ∈ {ℝ, ℂ}
122121a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ∈ {ℝ, ℂ})
123 ioossicc 12130 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
124123sseli 3564 . . . . . . . . 9 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
125124, 40sylan2 490 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
12615, 24subcld 10271 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌𝑍) ∈ ℂ)
127126adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌𝑍) ∈ ℂ)
12811adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵𝑋)
129128sselda 3568 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → 𝑧𝑋)
1308adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐹:𝑋⟶ℂ)
131130ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
132129, 131syldan 486 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
133 fvex 6113 . . . . . . . . 9 ((ℂ D 𝐹)‘𝑧) ∈ V
134133a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V)
13515adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ)
136124, 21sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
137135, 136mulcld 9939 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ)
138 1red 9934 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
139 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
140139recnd 9947 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
141 1red 9934 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
142120dvmptid 23526 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
143 ioossre 12106 . . . . . . . . . . . . . 14 (0(,)1) ⊆ ℝ
144143a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ⊆ ℝ)
145 iooretop 22379 . . . . . . . . . . . . . 14 (0(,)1) ∈ (topGen‘ran (,))
146145a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ∈ (topGen‘ran (,)))
147120, 140, 141, 142, 144, 114, 52, 146dvmptres 23532 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1))
148120, 136, 138, 147, 15dvmptcmul 23533 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)))
14915mulid1d 9936 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 1) = 𝑌)
150149mpteq2dv 4673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
151148, 150eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
15224adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ)
153124, 28sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
154152, 153mulcld 9939 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ)
155 negex 10158 . . . . . . . . . . 11 -𝑍 ∈ V
156155a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V)
157 negex 10158 . . . . . . . . . . . . 13 -1 ∈ V
158157a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈ V)
159 1cnd 9935 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
160 0red 9920 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈ ℝ)
161 1cnd 9935 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℂ)
162 0red 9920 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
163 1cnd 9935 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℂ)
164120, 163dvmptc 23527 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
165120, 161, 162, 164, 144, 114, 52, 146dvmptres 23532 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦ 0))
166120, 159, 160, 165, 136, 138, 147dvmptsub 23536 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 − 1)))
167 df-neg 10148 . . . . . . . . . . . . . 14 -1 = (0 − 1)
168167mpteq2i 4669 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ -1) = (𝑡 ∈ (0(,)1) ↦ (0 − 1))
169166, 168syl6eqr 2662 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1))
170120, 153, 158, 169, 24dvmptcmul 23533 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)))
171 neg1cn 11001 . . . . . . . . . . . . . 14 -1 ∈ ℂ
172 mulcom 9901 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑍 · -1) = (-1 · 𝑍))
17324, 171, 172sylancl 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = (-1 · 𝑍))
17424mulm1d 10361 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (-1 · 𝑍) = -𝑍)
175173, 174eqtrd 2644 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = -𝑍)
176175mpteq2dv 4673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
177170, 176eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
178120, 137, 135, 151, 154, 156, 177dvmptadd 23529 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)))
17915, 24negsubd 10277 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + -𝑍) = (𝑌𝑍))
180179mpteq2dv 4673 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
181178, 180eqtrd 2644 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
1829adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑋 ⊆ ℂ)
18377, 130, 182, 13, 85syl22anc 1319 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
18494adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
185184reseq2d 5317 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
186183, 185eqtrd 2644 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
18747oveq2d 6565 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))))
188 dvfcn 23478 . . . . . . . . . . . . 13 (ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ
189103feq2d 5944 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ ↔ (ℂ D (𝐹𝐵)):𝐵⟶ℂ))
190188, 189mpbii 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)):𝐵⟶ℂ)
191186feq1d 5943 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ))
192190, 191mpbid 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)
193192feqmptd 6159 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)))
194 fvres 6117 . . . . . . . . . . 11 (𝑧𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧))
195194mpteq2ia 4668 . . . . . . . . . 10 (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧))
196193, 195syl6eq 2660 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
197186, 187, 1963eqtr3d 2652 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
198 fveq2 6103 . . . . . . . 8 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
199120, 122, 125, 127, 132, 134, 181, 197, 48, 198dvmptco 23541 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
200118, 199eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
201200dmeqd 5248 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
202 ovex 6577 . . . . . . 7 (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
203202rgenw 2908 . . . . . 6 𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
204 dmmptg 5549 . . . . . 6 (∀𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
205203, 204mp1i 13 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
206201, 205eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1))
207 dvlipcn.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
208207adantr 480 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑀 ∈ ℝ)
209126abscld 14023 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(𝑌𝑍)) ∈ ℝ)
210208, 209remulcld 9949 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℝ)
211200fveq1d 6105 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡))
212 eqid 2610 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
213212fvmpt2 6200 . . . . . . . . . . . 12 ((𝑡 ∈ (0(,)1) ∧ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
214202, 213mpan2 703 . . . . . . . . . . 11 (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
215211, 214sylan9eq 2664 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
216215fveq2d 6107 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
217 dvfcn 23478 . . . . . . . . . . 11 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2185ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹))
219218, 125sseldd 3569 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹))
220 ffvelrn 6265 . . . . . . . . . . 11 (((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
221217, 219, 220sylancr 694 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
222221, 127absmuld 14041 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
223216, 222eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
224221abscld 14023 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ)
225207ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
226127abscld 14023 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌𝑍)) ∈ ℝ)
227127absge0d 14031 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(𝑌𝑍)))
228 dvlipcn.l . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
229228ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
230 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((ℂ D 𝐹)‘𝑥) = ((ℂ D 𝐹)‘𝑦))
231230fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦)))
232231breq1d 4593 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀))
233232cbvralv 3147 . . . . . . . . . . . 12 (∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
234229, 233sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
235234ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
236 fveq2 6103 . . . . . . . . . . . . 13 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑦) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
237236fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
238237breq1d 4593 . . . . . . . . . . 11 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
239238rspcv 3278 . . . . . . . . . 10 (((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵 → (∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
240125, 235, 239sylc 63 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)
241224, 225, 226, 227, 240lemul1ad 10842 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
242223, 241eqbrtrd 4605 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
243242ralrimiva 2949 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
244 nfv 1830 . . . . . . 7 𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
245 nfcv 2751 . . . . . . . . 9 𝑡abs
246 nfcv 2751 . . . . . . . . . . 11 𝑡
247 nfcv 2751 . . . . . . . . . . 11 𝑡 D
248 nfmpt1 4675 . . . . . . . . . . 11 𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
249246, 247, 248nfov 6575 . . . . . . . . . 10 𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
250 nfcv 2751 . . . . . . . . . 10 𝑡𝑧
251249, 250nffv 6110 . . . . . . . . 9 𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)
252245, 251nffv 6110 . . . . . . . 8 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
253 nfcv 2751 . . . . . . . 8 𝑡
254 nfcv 2751 . . . . . . . 8 𝑡(𝑀 · (abs‘(𝑌𝑍)))
255252, 253, 254nfbr 4629 . . . . . . 7 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
256 fveq2 6103 . . . . . . . . 9 (𝑡 = 𝑧 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
257256fveq2d 6107 . . . . . . . 8 (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)))
258257breq1d 4593 . . . . . . 7 (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
259244, 255, 258cbvral 3143 . . . . . 6 (∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
260243, 259sylib 207 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
261260r19.21bi 2916 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
2623, 4, 107, 206, 210, 261dvlip 23560 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
2631, 2, 262mpanr12 717 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
264 oveq2 6557 . . . . . . . . 9 (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1))
265 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
266 1m1e0 10966 . . . . . . . . . . 11 (1 − 1) = 0
267265, 266syl6eq 2660 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
268267oveq2d 6565 . . . . . . . . 9 (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0))
269264, 268oveq12d 6567 . . . . . . . 8 (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0)))
270269fveq2d 6107 . . . . . . 7 (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
271 eqid 2610 . . . . . . 7 (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
272 fvex 6113 . . . . . . 7 (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V
273270, 271, 272fvmpt 6191 . . . . . 6 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
2741, 273ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))
27524mul01d 10114 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 0) = 0)
276149, 275oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0))
27715addid1d 10115 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + 0) = 𝑌)
278276, 277eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌)
279278fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹𝑌))
280274, 279syl5eq 2656 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹𝑌))
281 oveq2 6557 . . . . . . . . 9 (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0))
282 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
283 1m0e1 11008 . . . . . . . . . . 11 (1 − 0) = 1
284282, 283syl6eq 2660 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
285284oveq2d 6565 . . . . . . . . 9 (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1))
286281, 285oveq12d 6567 . . . . . . . 8 (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1)))
287286fveq2d 6107 . . . . . . 7 (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
288 fvex 6113 . . . . . . 7 (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V
289287, 271, 288fvmpt 6191 . . . . . 6 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
2902, 289ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))
29115mul01d 10114 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 0) = 0)
29224mulid1d 9936 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 1) = 𝑍)
293291, 292oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍))
29424addid2d 10116 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0 + 𝑍) = 𝑍)
295293, 294eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍)
296295fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹𝑍))
297290, 296syl5eq 2656 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹𝑍))
298280, 297oveq12d 6567 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹𝑌) − (𝐹𝑍)))
299298fveq2d 6107 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
300283fveq2i 6106 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
301 abs1 13885 . . . . 5 (abs‘1) = 1
302300, 301eqtri 2632 . . . 4 (abs‘(1 − 0)) = 1
303302oveq2i 6560 . . 3 ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = ((𝑀 · (abs‘(𝑌𝑍))) · 1)
304210recnd 9947 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℂ)
305304mulid1d 9936 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · 1) = (𝑀 · (abs‘(𝑌𝑍))))
306303, 305syl5eq 2656 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = (𝑀 · (abs‘(𝑌𝑍))))
307263, 299, 3063brtr3d 4614 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  {cpr 4127   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952  cle 9954  cmin 10145  -cneg 10146  (,)cioo 12046  [,]cicc 12049  abscabs 13822  t crest 15904  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  fldccnfld 19567  Topctop 20517  intcnt 20631   Cn ccn 20838   ×t ctx 21173  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvlip2  23562  dv11cn  23568
  Copyright terms: Public domain W3C validator