MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip2 Structured version   Visualization version   GIF version

Theorem dvlip2 23562
Description: Combine the results of dvlip 23560 and dvlipcn 23561 into one. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvlip2.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvlip2.j 𝐽 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
dvlip2.x (𝜑𝑋𝑆)
dvlip2.f (𝜑𝐹:𝑋⟶ℂ)
dvlip2.a (𝜑𝐴𝑆)
dvlip2.r (𝜑𝑅 ∈ ℝ*)
dvlip2.b 𝐵 = (𝐴(ball‘𝐽)𝑅)
dvlip2.d (𝜑𝐵 ⊆ dom (𝑆 D 𝐹))
dvlip2.m (𝜑𝑀 ∈ ℝ)
dvlip2.l ((𝜑𝑥𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑌   𝑥,𝑍
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem dvlip2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dvlip2.j . . . . . . . 8 𝐽 = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
2 cnxmet 22386 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 dvlip2.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4 recnprss 23474 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
53, 4syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6 xmetres2 21976 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
72, 5, 6sylancr 694 . . . . . . . 8 (𝜑 → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
81, 7syl5eqel 2692 . . . . . . 7 (𝜑𝐽 ∈ (∞Met‘𝑆))
98ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐽 ∈ (∞Met‘𝑆))
10 dvlip2.a . . . . . . 7 (𝜑𝐴𝑆)
1110ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐴𝑆)
12 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍𝐵)
13 dvlip2.b . . . . . . . . 9 𝐵 = (𝐴(ball‘𝐽)𝑅)
1412, 13syl6eleq 2698 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍 ∈ (𝐴(ball‘𝐽)𝑅))
15 dvlip2.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ*)
1615ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑅 ∈ ℝ*)
17 elbl 22003 . . . . . . . . 9 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝑍 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅)))
189, 11, 16, 17syl3anc 1318 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅)))
1914, 18mpbid 221 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍𝑆 ∧ (𝐴𝐽𝑍) < 𝑅))
2019simpld 474 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍𝑆)
21 xmetcl 21946 . . . . . 6 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑍𝑆) → (𝐴𝐽𝑍) ∈ ℝ*)
229, 11, 20, 21syl3anc 1318 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) ∈ ℝ*)
23 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌𝐵)
2423, 13syl6eleq 2698 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌 ∈ (𝐴(ball‘𝐽)𝑅))
25 elbl 22003 . . . . . . . . 9 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝑌 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅)))
269, 11, 16, 25syl3anc 1318 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅)))
2724, 26mpbid 221 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌𝑆 ∧ (𝐴𝐽𝑌) < 𝑅))
2827simpld 474 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌𝑆)
29 xmetcl 21946 . . . . . 6 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑌𝑆) → (𝐴𝐽𝑌) ∈ ℝ*)
309, 11, 28, 29syl3anc 1318 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) ∈ ℝ*)
3122, 30ifcld 4081 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) ∈ ℝ*)
3219simprd 478 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) < 𝑅)
3327simprd 478 . . . . 5 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) < 𝑅)
34 breq1 4586 . . . . . 6 ((𝐴𝐽𝑍) = if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) → ((𝐴𝐽𝑍) < 𝑅 ↔ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅))
35 breq1 4586 . . . . . 6 ((𝐴𝐽𝑌) = if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) → ((𝐴𝐽𝑌) < 𝑅 ↔ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅))
3634, 35ifboth 4074 . . . . 5 (((𝐴𝐽𝑍) < 𝑅 ∧ (𝐴𝐽𝑌) < 𝑅) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅)
3732, 33, 36syl2anc 691 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅)
38 qbtwnxr 11905 . . . 4 ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) ∈ ℝ*𝑅 ∈ ℝ* ∧ if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑅) → ∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅))
3931, 16, 37, 38syl3anc 1318 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅))
40 qre 11669 . . . . 5 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
4130adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (𝐴𝐽𝑌) ∈ ℝ*)
4222adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (𝐴𝐽𝑍) ∈ ℝ*)
43 rexr 9964 . . . . . . . . 9 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
4443adantl 481 . . . . . . . 8 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℝ*)
45 xrmaxlt 11886 . . . . . . . 8 (((𝐴𝐽𝑌) ∈ ℝ* ∧ (𝐴𝐽𝑍) ∈ ℝ*𝑟 ∈ ℝ*) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 ↔ ((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟)))
4641, 42, 44, 45syl3anc 1318 . . . . . . 7 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 ↔ ((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟)))
47 ioossicc 12130 . . . . . . . . . . . . 13 ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ ((𝐴𝑟)[,](𝐴 + 𝑟))
48 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑆 = ℝ)
4928, 48eleqtrd 2690 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑌 ∈ ℝ)
5049ad2antrr 758 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ℝ)
51 xmetsym 21962 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑌𝑆) → (𝐴𝐽𝑌) = (𝑌𝐽𝐴))
529, 11, 28, 51syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) = (𝑌𝐽𝐴))
5348sqxpeqd 5065 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑆 × 𝑆) = (ℝ × ℝ))
5453reseq2d 5317 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℝ × ℝ)))
551, 54syl5eq 2656 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐽 = ((abs ∘ − ) ↾ (ℝ × ℝ)))
5655oveqd 6566 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌𝐽𝐴) = (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
5711, 48eleqtrd 2690 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐴 ∈ ℝ)
58 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
5958remetdval 22400 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑌𝐴)))
6049, 57, 59syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑌((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑌𝐴)))
6152, 56, 603eqtrd 2648 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑌) = (abs‘(𝑌𝐴)))
6261ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑌) = (abs‘(𝑌𝐴)))
63 simprll 798 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑌) < 𝑟)
6462, 63eqbrtrrd 4607 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(𝑌𝐴)) < 𝑟)
6557ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐴 ∈ ℝ)
66 simplr 788 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑟 ∈ ℝ)
6750, 65, 66absdifltd 14020 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((abs‘(𝑌𝐴)) < 𝑟 ↔ ((𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
6864, 67mpbid 221 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟)))
6968simpld 474 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) < 𝑌)
7068simprd 478 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 < (𝐴 + 𝑟))
7165, 66resubcld 10337 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) ∈ ℝ)
7271rexrd 9968 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) ∈ ℝ*)
7365, 66readdcld 9948 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴 + 𝑟) ∈ ℝ)
7473rexrd 9968 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴 + 𝑟) ∈ ℝ*)
75 elioo2 12087 . . . . . . . . . . . . . . 15 (((𝐴𝑟) ∈ ℝ* ∧ (𝐴 + 𝑟) ∈ ℝ*) → (𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑌 ∈ ℝ ∧ (𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
7672, 74, 75syl2anc 691 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑌 ∈ ℝ ∧ (𝐴𝑟) < 𝑌𝑌 < (𝐴 + 𝑟))))
7750, 69, 70, 76mpbir3and 1238 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)))
7847, 77sseldi 3566 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))
79 fvres 6117 . . . . . . . . . . . 12 (𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) = (𝐹𝑌))
8078, 79syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) = (𝐹𝑌))
8120, 48eleqtrd 2690 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑍 ∈ ℝ)
8281ad2antrr 758 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ℝ)
83 xmetsym 21962 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑍𝑆) → (𝐴𝐽𝑍) = (𝑍𝐽𝐴))
849, 11, 20, 83syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) = (𝑍𝐽𝐴))
8555oveqd 6566 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍𝐽𝐴) = (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
8658remetdval 22400 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑍𝐴)))
8781, 57, 86syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑍((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑍𝐴)))
8884, 85, 873eqtrd 2648 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴𝐽𝑍) = (abs‘(𝑍𝐴)))
8988ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑍) = (abs‘(𝑍𝐴)))
90 simprlr 799 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝐽𝑍) < 𝑟)
9189, 90eqbrtrrd 4607 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(𝑍𝐴)) < 𝑟)
9282, 65, 66absdifltd 14020 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((abs‘(𝑍𝐴)) < 𝑟 ↔ ((𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
9391, 92mpbid 221 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟)))
9493simpld 474 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐴𝑟) < 𝑍)
9593simprd 478 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 < (𝐴 + 𝑟))
96 elioo2 12087 . . . . . . . . . . . . . . 15 (((𝐴𝑟) ∈ ℝ* ∧ (𝐴 + 𝑟) ∈ ℝ*) → (𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑍 ∈ ℝ ∧ (𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
9772, 74, 96syl2anc 691 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) ↔ (𝑍 ∈ ℝ ∧ (𝐴𝑟) < 𝑍𝑍 < (𝐴 + 𝑟))))
9882, 94, 95, 97mpbir3and 1238 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)))
9947, 98sseldi 3566 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))
100 fvres 6117 . . . . . . . . . . . 12 (𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍) = (𝐹𝑍))
10199, 100syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍) = (𝐹𝑍))
10280, 101oveq12d 6567 . . . . . . . . . 10 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍)) = ((𝐹𝑌) − (𝐹𝑍)))
103102fveq2d 6107 . . . . . . . . 9 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
1049ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐽 ∈ (∞Met‘𝑆))
105 elicc2 12109 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑟) ∈ ℝ ∧ (𝐴 + 𝑟) ∈ ℝ) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
10671, 73, 105syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
107106biimpa 500 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥 ∈ ℝ ∧ (𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟)))
108107simp1d 1066 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ∈ ℝ)
10948ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑆 = ℝ)
110108, 109eleqtrrd 2691 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥𝑆)
11111ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐴𝑆)
112 xmetcl 21946 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐽𝐴) ∈ ℝ*)
113104, 110, 111, 112syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) ∈ ℝ*)
11466adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 ∈ ℝ)
115114rexrd 9968 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 ∈ ℝ*)
11616ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑅 ∈ ℝ*)
11755ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐽 = ((abs ∘ − ) ↾ (ℝ × ℝ)))
118117oveqd 6566 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴))
11965adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝐴 ∈ ℝ)
12058remetdval 22400 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑥𝐴)))
121108, 119, 120syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝐴) = (abs‘(𝑥𝐴)))
122118, 121eqtrd 2644 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) = (abs‘(𝑥𝐴)))
123107simp2d 1067 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝐴𝑟) ≤ 𝑥)
124107simp3d 1068 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ≤ (𝐴 + 𝑟))
125108, 119, 114absdifled 14021 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → ((abs‘(𝑥𝐴)) ≤ 𝑟 ↔ ((𝐴𝑟) ≤ 𝑥𝑥 ≤ (𝐴 + 𝑟))))
126123, 124, 125mpbir2and 959 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (abs‘(𝑥𝐴)) ≤ 𝑟)
127122, 126eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) ≤ 𝑟)
128 simplrr 797 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑟 < 𝑅)
129113, 115, 116, 127, 128xrlelttrd 11867 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥𝐽𝐴) < 𝑅)
130 elbl3 22007 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ (∞Met‘𝑆) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝑥𝑆)) → (𝑥 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑥𝐽𝐴) < 𝑅))
131104, 116, 111, 110, 130syl22anc 1319 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (𝑥 ∈ (𝐴(ball‘𝐽)𝑅) ↔ (𝑥𝐽𝐴) < 𝑅))
132129, 131mpbird 246 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → 𝑥 ∈ (𝐴(ball‘𝐽)𝑅))
133132ex 449 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝑥 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) → 𝑥 ∈ (𝐴(ball‘𝐽)𝑅)))
134133ssrdv 3574 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ (𝐴(ball‘𝐽)𝑅))
135134, 13syl6sseqr 3615 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ 𝐵)
136135resabs1d 5348 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) = (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))
137 ax-resscn 9872 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
138137a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ℝ ⊆ ℂ)
139 dvlip2.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℂ)
140139ad4antr 764 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐹:𝑋⟶ℂ)
141 dvlip2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ dom (𝑆 D 𝐹))
142 dvlip2.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋𝑆)
1435, 139, 142dvbss 23471 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
144141, 143sstrd 3578 . . . . . . . . . . . . . . . . 17 (𝜑𝐵𝑋)
145144ad4antr 764 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐵𝑋)
146140, 145fssresd 5984 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹𝐵):𝐵⟶ℂ)
147 blssm 22033 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝐴(ball‘𝐽)𝑅) ⊆ 𝑆)
1489, 11, 16, 147syl3anc 1318 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘𝐽)𝑅) ⊆ 𝑆)
14913, 148syl5eqss 3612 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵𝑆)
150149, 48sseqtrd 3604 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ ℝ)
151150ad2antrr 758 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝐵 ⊆ ℝ)
152137a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ℝ ⊆ ℂ)
153139ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐹:𝑋⟶ℂ)
154142ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑋𝑆)
155154, 48sseqtrd 3604 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝑋 ⊆ ℝ)
156 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
157156tgioo2 22414 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
158156, 157dvres 23481 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ 𝐵 ⊆ ℝ)) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)))
159152, 153, 155, 150, 158syl22anc 1319 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)))
160 retop 22375 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) ∈ Top
16155fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ball‘𝐽) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ))))
162161oveqd 6566 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘𝐽)𝑅) = (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅))
16313, 162syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 = (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅))
16455, 9eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘𝑆))
165 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . 25 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
16658, 165tgioo 22407 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
167166blopn 22115 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘𝑆) ∧ 𝐴𝑆𝑅 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅) ∈ (topGen‘ran (,)))
168164, 11, 16, 167syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑅) ∈ (topGen‘ran (,)))
169163, 168eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ∈ (topGen‘ran (,)))
170 isopn3i 20696 . . . . . . . . . . . . . . . . . . . . 21 (((topGen‘ran (,)) ∈ Top ∧ 𝐵 ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘𝐵) = 𝐵)
171160, 169, 170sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((int‘(topGen‘ran (,)))‘𝐵) = 𝐵)
172171reseq2d 5317 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘𝐵)) = ((ℝ D 𝐹) ↾ 𝐵))
173159, 172eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((ℝ D 𝐹) ↾ 𝐵))
174173dmeqd 5248 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (ℝ D (𝐹𝐵)) = dom ((ℝ D 𝐹) ↾ 𝐵))
175 dmres 5339 . . . . . . . . . . . . . . . . . 18 dom ((ℝ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℝ D 𝐹))
176141ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ dom (𝑆 D 𝐹))
17748oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝑆 D 𝐹) = (ℝ D 𝐹))
178177dmeqd 5248 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (𝑆 D 𝐹) = dom (ℝ D 𝐹))
179176, 178sseqtrd 3604 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → 𝐵 ⊆ dom (ℝ D 𝐹))
180 df-ss 3554 . . . . . . . . . . . . . . . . . . 19 (𝐵 ⊆ dom (ℝ D 𝐹) ↔ (𝐵 ∩ dom (ℝ D 𝐹)) = 𝐵)
181179, 180sylib 207 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (𝐵 ∩ dom (ℝ D 𝐹)) = 𝐵)
182175, 181syl5eq 2656 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom ((ℝ D 𝐹) ↾ 𝐵) = 𝐵)
183174, 182eqtrd 2644 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → dom (ℝ D (𝐹𝐵)) = 𝐵)
184183ad2antrr 758 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹𝐵)) = 𝐵)
185 dvcn 23490 . . . . . . . . . . . . . . 15 (((ℝ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) ∧ dom (ℝ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
186138, 146, 151, 184, 185syl31anc 1321 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
187 rescncf 22508 . . . . . . . . . . . . . 14 (((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ 𝐵 → ((𝐹𝐵) ∈ (𝐵cn→ℂ) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ)))
188135, 186, 187sylc 63 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ))
189136, 188eqeltrrd 2689 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))) ∈ (((𝐴𝑟)[,](𝐴 + 𝑟))–cn→ℂ))
190135, 151sstrd 3578 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ ℝ)
191156, 157dvres 23481 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ) ∧ (𝐵 ⊆ ℝ ∧ ((𝐴𝑟)[,](𝐴 + 𝑟)) ⊆ ℝ)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))))
192138, 146, 151, 190, 191syl22anc 1319 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))))
193136oveq2d 6565 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D ((𝐹𝐵) ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))))
194 iccntr 22432 . . . . . . . . . . . . . . . . 17 (((𝐴𝑟) ∈ ℝ ∧ (𝐴 + 𝑟) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
19571, 73, 194syl2anc 691 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
196195reseq2d 5317 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((ℝ D (𝐹𝐵)) ↾ ((int‘(topGen‘ran (,)))‘((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
197192, 193, 1963eqtr3d 2652 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
198197dmeqd 5248 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))))
199 dmres 5339 . . . . . . . . . . . . . 14 dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))) = (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵)))
20047, 135syl5ss 3579 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ 𝐵)
201200, 184sseqtr4d 3605 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ dom (ℝ D (𝐹𝐵)))
202 df-ss 3554 . . . . . . . . . . . . . . 15 (((𝐴𝑟)(,)(𝐴 + 𝑟)) ⊆ dom (ℝ D (𝐹𝐵)) ↔ (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
203201, 202sylib 207 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (((𝐴𝑟)(,)(𝐴 + 𝑟)) ∩ dom (ℝ D (𝐹𝐵))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
204199, 203syl5eq 2656 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom ((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
205198, 204eqtrd 2644 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → dom (ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))) = ((𝐴𝑟)(,)(𝐴 + 𝑟)))
206 dvlip2.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
207206ad4antr 764 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝑀 ∈ ℝ)
208197fveq1d 6105 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = (((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟)))‘𝑥))
209 fvres 6117 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟)) → (((ℝ D (𝐹𝐵)) ↾ ((𝐴𝑟)(,)(𝐴 + 𝑟)))‘𝑥) = ((ℝ D (𝐹𝐵))‘𝑥))
210208, 209sylan9eq 2664 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = ((ℝ D (𝐹𝐵))‘𝑥))
211177reseq1d 5316 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((𝑆 D 𝐹) ↾ 𝐵) = ((ℝ D 𝐹) ↾ 𝐵))
212173, 211eqtr4d 2647 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (ℝ D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ 𝐵))
213212fveq1d 6105 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → ((ℝ D (𝐹𝐵))‘𝑥) = (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥))
214213ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹𝐵))‘𝑥) = (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥))
215200sselda 3568 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → 𝑥𝐵)
216 fvres 6117 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
217215, 216syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (((𝑆 D 𝐹) ↾ 𝐵)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
218210, 214, 2173eqtrd 2648 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → ((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
219218fveq2d 6107 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥)) = (abs‘((𝑆 D 𝐹)‘𝑥)))
220 simp-4l 802 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → 𝜑)
221 dvlip2.l . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
222220, 221sylan 487 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
223215, 222syldan 486 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀)
224219, 223eqbrtrd 4605 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ 𝑥 ∈ ((𝐴𝑟)(,)(𝐴 + 𝑟))) → (abs‘((ℝ D (𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟))))‘𝑥)) ≤ 𝑀)
22571, 73, 189, 205, 207, 224dvlip 23560 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) ∧ (𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ∧ 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)))) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
226225ex 449 . . . . . . . . . 10 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → ((𝑌 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟)) ∧ 𝑍 ∈ ((𝐴𝑟)[,](𝐴 + 𝑟))) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
22778, 99, 226mp2and 711 . . . . . . . . 9 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘(((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑌) − ((𝐹 ↾ ((𝐴𝑟)[,](𝐴 + 𝑟)))‘𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
228103, 227eqbrtrrd 4607 . . . . . . . 8 (((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) ∧ (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) ∧ 𝑟 < 𝑅)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
229228exp32 629 . . . . . . 7 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (((𝐴𝐽𝑌) < 𝑟 ∧ (𝐴𝐽𝑍) < 𝑟) → (𝑟 < 𝑅 → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))))
23046, 229sylbid 229 . . . . . 6 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟 → (𝑟 < 𝑅 → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))))
231230impd 446 . . . . 5 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℝ) → ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
23240, 231sylan2 490 . . . 4 ((((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) ∧ 𝑟 ∈ ℚ) → ((if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
233232rexlimdva 3013 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (∃𝑟 ∈ ℚ (if((𝐴𝐽𝑌) ≤ (𝐴𝐽𝑍), (𝐴𝐽𝑍), (𝐴𝐽𝑌)) < 𝑟𝑟 < 𝑅) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
23439, 233mpd 15 . 2 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℝ) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
235 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑆 = ℂ) → 𝑆 = ℂ)
236235sqxpeqd 5065 . . . . . . . . . . . . 13 ((𝜑𝑆 = ℂ) → (𝑆 × 𝑆) = (ℂ × ℂ))
237236reseq2d 5317 . . . . . . . . . . . 12 ((𝜑𝑆 = ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (ℂ × ℂ)))
238 absf 13925 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
239 subf 10162 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
240 fco 5971 . . . . . . . . . . . . . 14 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
241238, 239, 240mp2an 704 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
242 ffn 5958 . . . . . . . . . . . . 13 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
243 fnresdm 5914 . . . . . . . . . . . . 13 ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ))
244241, 242, 243mp2b 10 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )
245237, 244syl6eq 2660 . . . . . . . . . . 11 ((𝜑𝑆 = ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = (abs ∘ − ))
2461, 245syl5eq 2656 . . . . . . . . . 10 ((𝜑𝑆 = ℂ) → 𝐽 = (abs ∘ − ))
247246fveq2d 6107 . . . . . . . . 9 ((𝜑𝑆 = ℂ) → (ball‘𝐽) = (ball‘(abs ∘ − )))
248247oveqd 6566 . . . . . . . 8 ((𝜑𝑆 = ℂ) → (𝐴(ball‘𝐽)𝑅) = (𝐴(ball‘(abs ∘ − ))𝑅))
24913, 248syl5eq 2656 . . . . . . 7 ((𝜑𝑆 = ℂ) → 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅))
250249eleq2d 2673 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑌𝐵𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
251249eleq2d 2673 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑍𝐵𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
252250, 251anbi12d 743 . . . . 5 ((𝜑𝑆 = ℂ) → ((𝑌𝐵𝑍𝐵) ↔ (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅))))
253252biimpa 500 . . . 4 (((𝜑𝑆 = ℂ) ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
254142adantr 480 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝑋𝑆)
255254, 235sseqtrd 3604 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑋 ⊆ ℂ)
256139adantr 480 . . . . 5 ((𝜑𝑆 = ℂ) → 𝐹:𝑋⟶ℂ)
25710adantr 480 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝐴𝑆)
258257, 235eleqtrd 2690 . . . . 5 ((𝜑𝑆 = ℂ) → 𝐴 ∈ ℂ)
25915adantr 480 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑅 ∈ ℝ*)
260 eqid 2610 . . . . 5 (𝐴(ball‘(abs ∘ − ))𝑅) = (𝐴(ball‘(abs ∘ − ))𝑅)
261141adantr 480 . . . . . 6 ((𝜑𝑆 = ℂ) → 𝐵 ⊆ dom (𝑆 D 𝐹))
262235oveq1d 6564 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑆 D 𝐹) = (ℂ D 𝐹))
263262dmeqd 5248 . . . . . 6 ((𝜑𝑆 = ℂ) → dom (𝑆 D 𝐹) = dom (ℂ D 𝐹))
264261, 249, 2633sstr3d 3610 . . . . 5 ((𝜑𝑆 = ℂ) → (𝐴(ball‘(abs ∘ − ))𝑅) ⊆ dom (ℂ D 𝐹))
265206adantr 480 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑀 ∈ ℝ)
266221ex 449 . . . . . . . 8 (𝜑 → (𝑥𝐵 → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀))
267266adantr 480 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑥𝐵 → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀))
268249eleq2d 2673 . . . . . . 7 ((𝜑𝑆 = ℂ) → (𝑥𝐵𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)))
269262fveq1d 6105 . . . . . . . . 9 ((𝜑𝑆 = ℂ) → ((𝑆 D 𝐹)‘𝑥) = ((ℂ D 𝐹)‘𝑥))
270269fveq2d 6107 . . . . . . . 8 ((𝜑𝑆 = ℂ) → (abs‘((𝑆 D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑥)))
271270breq1d 4593 . . . . . . 7 ((𝜑𝑆 = ℂ) → ((abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀))
272267, 268, 2713imtr3d 281 . . . . . 6 ((𝜑𝑆 = ℂ) → (𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀))
273272imp 444 . . . . 5 (((𝜑𝑆 = ℂ) ∧ 𝑥 ∈ (𝐴(ball‘(abs ∘ − ))𝑅)) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
274255, 256, 258, 259, 260, 264, 265, 273dvlipcn 23561 . . . 4 (((𝜑𝑆 = ℂ) ∧ (𝑌 ∈ (𝐴(ball‘(abs ∘ − ))𝑅) ∧ 𝑍 ∈ (𝐴(ball‘(abs ∘ − ))𝑅))) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
275253, 274syldan 486 . . 3 (((𝜑𝑆 = ℂ) ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
276275an32s 842 . 2 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑆 = ℂ) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
277 elpri 4145 . . . 4 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
2783, 277syl 17 . . 3 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
279278adantr 480 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑆 = ℝ ∨ 𝑆 = ℂ))
280234, 276, 279mpjaodan 823 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cin 3539  wss 3540  ifcif 4036  {cpr 4127   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cq 11664  (,)cioo 12046  [,]cicc 12049  abscabs 13822  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  fldccnfld 19567  Topctop 20517  intcnt 20631  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  ulmdvlem1  23958  dvconstbi  37555
  Copyright terms: Public domain W3C validator