Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Visualization version   GIF version

Theorem dvivth 23577
 Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 23034 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
dvivth (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))

Proof of Theorem dvivth
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvivth.1 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐴(,)𝐵))
21adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
3 dvivth.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐴(,)𝐵))
43adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
5 dvivth.3 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
6 cncff 22504 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
87ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
98renegcld 10336 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → -(𝐹𝑤) ∈ ℝ)
10 eqid 2610 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))
119, 10fmptd 6292 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ)
12 ax-resscn 9872 . . . . . . . . . . . 12 ℝ ⊆ ℂ
13 ssid 3587 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
14 cncfss 22510 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
1512, 13, 14mp2an 704 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)
1615, 5sseldi 3566 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
1710negfcncf 22530 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
1816, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
19 cncffvrn 22509 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2012, 18, 19sylancr 694 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)):(𝐴(,)𝐵)⟶ℝ))
2111, 20mpbird 246 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
2221adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)) ∈ ((𝐴(,)𝐵)–cn→ℝ))
23 reelprrecn 9907 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
2423a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ℝ ∈ {ℝ, ℂ})
257adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
2625ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℝ)
2726recnd 9947 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (𝐹𝑤) ∈ ℂ)
28 fvex 6113 . . . . . . . . . . . . 13 ((ℝ D 𝐹)‘𝑤) ∈ V
2928a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ V)
3025feqmptd 6159 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤)))
3130oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))))
32 ioossre 12106 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
33 dvfre 23520 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
347, 32, 33sylancl 693 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
35 dvivth.4 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
3635feq2d 5944 . . . . . . . . . . . . . . . 16 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
3734, 36mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3837adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
3938feqmptd 6159 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4031, 39eqtr3d 2646 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑤)))
4124, 27, 29, 40dvmptneg 23535 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
4241dmeqd 5248 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
43 dmmptg 5549 . . . . . . . . . . 11 (∀𝑤 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑤) ∈ V → dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵))
44 negex 10158 . . . . . . . . . . . 12 -((ℝ D 𝐹)‘𝑤) ∈ V
4544a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑤) ∈ V)
4643, 45mprg 2910 . . . . . . . . . 10 dom (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝐴(,)𝐵)
4742, 46syl6eq 2660 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = (𝐴(,)𝐵))
48 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 < 𝑁)
49 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
5037, 1ffvelrnd 6268 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
523, 35eleqtrrd 2691 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
5334, 52ffvelrnd 6268 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
55 iccssre 12126 . . . . . . . . . . . . . . 15 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5650, 53, 55syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5756adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ℝ)
5857, 49sseldd 3569 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℝ)
59 iccneg 12164 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑀) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6051, 54, 58, 59syl3anc 1318 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ↔ -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀))))
6149, 60mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
6241fveq1d 6105 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁))
63 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑤 = 𝑁 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑁))
6463negeqd 10154 . . . . . . . . . . . . . 14 (𝑤 = 𝑁 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑁))
65 eqid 2610 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))
66 negex 10158 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑁) ∈ V
6764, 65, 66fvmpt 6191 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
684, 67syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
6962, 68eqtrd 2644 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁) = -((ℝ D 𝐹)‘𝑁))
7041fveq1d 6105 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀))
71 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑀))
7271negeqd 10154 . . . . . . . . . . . . . 14 (𝑤 = 𝑀 → -((ℝ D 𝐹)‘𝑤) = -((ℝ D 𝐹)‘𝑀))
73 negex 10158 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑀) ∈ V
7472, 65, 73fvmpt 6191 . . . . . . . . . . . . 13 (𝑀 ∈ (𝐴(,)𝐵) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
752, 74syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7670, 75eqtrd 2644 . . . . . . . . . . 11 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀) = -((ℝ D 𝐹)‘𝑀))
7769, 76oveq12d 6567 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)) = (-((ℝ D 𝐹)‘𝑁)[,]-((ℝ D 𝐹)‘𝑀)))
7861, 77eleqtrrd 2691 . . . . . . . . 9 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ (((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑁)[,]((ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤)))‘𝑀)))
79 eqid 2610 . . . . . . . . 9 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))‘𝑦) − (-𝑥 · 𝑦)))
802, 4, 22, 47, 48, 78, 79dvivthlem2 23576 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))))
8141rneqd 5274 . . . . . . . 8 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ran (ℝ D (𝑤 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑤))) = ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
8280, 81eleqtrd 2690 . . . . . . 7 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → -𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)))
83 negex 10158 . . . . . . . 8 -𝑥 ∈ V
8465elrnmpt 5293 . . . . . . . 8 (-𝑥 ∈ V → (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤)))
8583, 84ax-mp 5 . . . . . . 7 (-𝑥 ∈ ran (𝑤 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑤)) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8682, 85sylib 207 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤))
8758recnd 9947 . . . . . . . . . 10 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ℂ)
8887adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
8924, 27, 29, 40dvmptcl 23528 . . . . . . . . 9 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑤) ∈ ℂ)
9088, 89neg11ad 10267 . . . . . . . 8 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ 𝑥 = ((ℝ D 𝐹)‘𝑤)))
91 eqcom 2617 . . . . . . . 8 (𝑥 = ((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥)
9290, 91syl6bb 275 . . . . . . 7 (((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) ∧ 𝑤 ∈ (𝐴(,)𝐵)) → (-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ((ℝ D 𝐹)‘𝑤) = 𝑥))
9392rexbidva 3031 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (∃𝑤 ∈ (𝐴(,)𝐵)-𝑥 = -((ℝ D 𝐹)‘𝑤) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9486, 93mpbid 221 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥)
95 ffn 5958 . . . . . . 7 ((ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
9638, 95syl 17 . . . . . 6 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (ℝ D 𝐹) Fn (𝐴(,)𝐵))
97 fvelrnb 6153 . . . . . 6 ((ℝ D 𝐹) Fn (𝐴(,)𝐵) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9896, 97syl 17 . . . . 5 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → (𝑥 ∈ ran (ℝ D 𝐹) ↔ ∃𝑤 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑤) = 𝑥))
9994, 98mpbird 246 . . . 4 ((𝜑 ∧ (𝑀 < 𝑁𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
10099expr 641 . . 3 ((𝜑𝑀 < 𝑁) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
101100ssrdv 3574 . 2 ((𝜑𝑀 < 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
102 fveq2 6103 . . . . 5 (𝑀 = 𝑁 → ((ℝ D 𝐹)‘𝑀) = ((ℝ D 𝐹)‘𝑁))
103102oveq1d 6564 . . . 4 (𝑀 = 𝑁 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)))
10453rexrd 9968 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ*)
105 iccid 12091 . . . . 5 (((ℝ D 𝐹)‘𝑁) ∈ ℝ* → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
106104, 105syl 17 . . . 4 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
107103, 106sylan9eqr 2666 . . 3 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) = {((ℝ D 𝐹)‘𝑁)})
108 ffn 5958 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
10934, 108syl 17 . . . . . 6 (𝜑 → (ℝ D 𝐹) Fn dom (ℝ D 𝐹))
110 fnfvelrn 6264 . . . . . 6 (((ℝ D 𝐹) Fn dom (ℝ D 𝐹) ∧ 𝑁 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
111109, 52, 110syl2anc 691 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ran (ℝ D 𝐹))
112111snssd 4281 . . . 4 (𝜑 → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
113112adantr 480 . . 3 ((𝜑𝑀 = 𝑁) → {((ℝ D 𝐹)‘𝑁)} ⊆ ran (ℝ D 𝐹))
114107, 113eqsstrd 3602 . 2 ((𝜑𝑀 = 𝑁) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
1153adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 ∈ (𝐴(,)𝐵))
1161adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑀 ∈ (𝐴(,)𝐵))
1175adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
11835adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
119 simprl 790 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑁 < 𝑀)
120 simprr 792 . . . . 5 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))
121 eqid 2610 . . . . 5 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝑥 · 𝑦)))
122115, 116, 117, 118, 119, 120, 121dvivthlem2 23576 . . . 4 ((𝜑 ∧ (𝑁 < 𝑀𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)))) → 𝑥 ∈ ran (ℝ D 𝐹))
123122expr 641 . . 3 ((𝜑𝑁 < 𝑀) → (𝑥 ∈ (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) → 𝑥 ∈ ran (ℝ D 𝐹)))
124123ssrdv 3574 . 2 ((𝜑𝑁 < 𝑀) → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
12532, 1sseldi 3566 . . 3 (𝜑𝑀 ∈ ℝ)
12632, 3sseldi 3566 . . 3 (𝜑𝑁 ∈ ℝ)
127125, 126lttri4d 10057 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
128101, 114, 124, 127mpjao3dan 1387 1 (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   · cmul 9820  ℝ*cxr 9952   < clt 9953   − cmin 10145  -cneg 10146  (,)cioo 12046  [,]cicc 12049  –cn→ccncf 22487   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvne0  23578
 Copyright terms: Public domain W3C validator