Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscacbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscacbv | ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvscaval.s | . 2 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
2 | fveq1 6102 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑓))) | |
3 | coeq1 5201 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑓))) | |
4 | 2, 3 | opeq12d 4348 | . . 3 ⊢ (𝑠 = 𝑡 → 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉) |
5 | fveq2 6103 | . . . . 5 ⊢ (𝑓 = 𝑔 → (1st ‘𝑓) = (1st ‘𝑔)) | |
6 | 5 | fveq2d 6107 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑔))) |
7 | fveq2 6103 | . . . . 5 ⊢ (𝑓 = 𝑔 → (2nd ‘𝑓) = (2nd ‘𝑔)) | |
8 | 7 | coeq2d 5206 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑔))) |
9 | 6, 8 | opeq12d 4348 | . . 3 ⊢ (𝑓 = 𝑔 → 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | 4, 9 | cbvmpt2v 6633 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
11 | 1, 10 | eqtri 2632 | 1 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 〈cop 4131 × cxp 5036 ∘ ccom 5042 ‘cfv 5804 ↦ cmpt2 6551 1st c1st 7057 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-co 5047 df-iota 5768 df-fv 5812 df-oprab 6553 df-mpt2 6554 |
This theorem is referenced by: dvhvscaval 35406 |
Copyright terms: Public domain | W3C validator |