Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 3-Nov-2013.) |
Ref | Expression |
---|---|
dvhvaddval.a | ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) |
Ref | Expression |
---|---|
dvhvaddcbv | ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvaddval.a | . 2 ⊢ + = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) | |
2 | fveq2 6103 | . . . . 5 ⊢ (𝑓 = ℎ → (1st ‘𝑓) = (1st ‘ℎ)) | |
3 | 2 | coeq1d 5205 | . . . 4 ⊢ (𝑓 = ℎ → ((1st ‘𝑓) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑔))) |
4 | fveq2 6103 | . . . . 5 ⊢ (𝑓 = ℎ → (2nd ‘𝑓) = (2nd ‘ℎ)) | |
5 | 4 | oveq1d 6564 | . . . 4 ⊢ (𝑓 = ℎ → ((2nd ‘𝑓) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))) |
6 | 3, 5 | opeq12d 4348 | . . 3 ⊢ (𝑓 = ℎ → 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉) |
7 | fveq2 6103 | . . . . 5 ⊢ (𝑔 = 𝑖 → (1st ‘𝑔) = (1st ‘𝑖)) | |
8 | 7 | coeq2d 5206 | . . . 4 ⊢ (𝑔 = 𝑖 → ((1st ‘ℎ) ∘ (1st ‘𝑔)) = ((1st ‘ℎ) ∘ (1st ‘𝑖))) |
9 | fveq2 6103 | . . . . 5 ⊢ (𝑔 = 𝑖 → (2nd ‘𝑔) = (2nd ‘𝑖)) | |
10 | 9 | oveq2d 6565 | . . . 4 ⊢ (𝑔 = 𝑖 → ((2nd ‘ℎ) ⨣ (2nd ‘𝑔)) = ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))) |
11 | 8, 10 | opeq12d 4348 | . . 3 ⊢ (𝑔 = 𝑖 → 〈((1st ‘ℎ) ∘ (1st ‘𝑔)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑔))〉 = 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
12 | 6, 11 | cbvmpt2v 6633 | . 2 ⊢ (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓) ⨣ (2nd ‘𝑔))〉) = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
13 | 1, 12 | eqtri 2632 | 1 ⊢ + = (ℎ ∈ (𝑇 × 𝐸), 𝑖 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘ℎ) ∘ (1st ‘𝑖)), ((2nd ‘ℎ) ⨣ (2nd ‘𝑖))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 〈cop 4131 × cxp 5036 ∘ ccom 5042 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1st c1st 7057 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-co 5047 df-iota 5768 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 |
This theorem is referenced by: dvhvaddval 35397 |
Copyright terms: Public domain | W3C validator |