 Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Visualization version   GIF version

 Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
Assertion
Ref Expression
dvhvaddass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))

StepHypRef Expression
1 coass 5571 . . . 4 (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼)))
2 dvhvaddcl.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dvhvaddcl.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dvhvaddcl.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 dvhvaddcl.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dvhvaddcl.d . . . . . . . . 9 𝐷 = (Scalar‘𝑈)
7 dvhvaddcl.a . . . . . . . . 9 + = (+g𝑈)
8 dvhvaddcl.p . . . . . . . . 9 = (+g𝐷)
92, 3, 4, 5, 6, 7, 8dvhvadd 35399 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1093adantr3 1215 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1110fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
12 fvex 6113 . . . . . . . 8 (1st𝐹) ∈ V
13 fvex 6113 . . . . . . . 8 (1st𝐺) ∈ V
1412, 13coex 7011 . . . . . . 7 ((1st𝐹) ∘ (1st𝐺)) ∈ V
15 ovex 6577 . . . . . . 7 ((2nd𝐹) (2nd𝐺)) ∈ V
1614, 15op1st 7067 . . . . . 6 (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((1st𝐹) ∘ (1st𝐺))
1711, 16syl6eq 2660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = ((1st𝐹) ∘ (1st𝐺)))
1817coeq1d 5205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)))
192, 3, 4, 5, 6, 7, 8dvhvadd 35399 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
20193adantr1 1213 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
2120fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
22 fvex 6113 . . . . . . . 8 (1st𝐼) ∈ V
2313, 22coex 7011 . . . . . . 7 ((1st𝐺) ∘ (1st𝐼)) ∈ V
24 ovex 6577 . . . . . . 7 ((2nd𝐺) (2nd𝐼)) ∈ V
2523, 24op1st 7067 . . . . . 6 (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((1st𝐺) ∘ (1st𝐼))
2621, 25syl6eq 2660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = ((1st𝐺) ∘ (1st𝐼)))
2726coeq2d 5206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼))))
281, 18, 273eqtr4a 2670 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))))
29 xp2nd 7090 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
30 xp2nd 7090 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
31 xp2nd 7090 . . . . . 6 (𝐼 ∈ (𝑇 × 𝐸) → (2nd𝐼) ∈ 𝐸)
3229, 30, 313anim123i 1240 . . . . 5 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸)) → ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸))
33 eqid 2610 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
342, 33, 5, 6dvhsca 35389 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
352, 33erngdv 35299 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
3634, 35eqeltrd 2688 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
37 drnggrp 18578 . . . . . . . 8 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
3836, 37syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
3938adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → 𝐷 ∈ Grp)
40 simpr1 1060 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ 𝐸)
41 eqid 2610 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
422, 4, 5, 6, 41dvhbase 35390 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
4342adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (Base‘𝐷) = 𝐸)
4440, 43eleqtrrd 2691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ (Base‘𝐷))
45 simpr2 1061 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ 𝐸)
4645, 43eleqtrrd 2691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ (Base‘𝐷))
47 simpr3 1062 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ 𝐸)
4847, 43eleqtrrd 2691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ (Base‘𝐷))
4941, 8grpass 17254 . . . . . 6 ((𝐷 ∈ Grp ∧ ((2nd𝐹) ∈ (Base‘𝐷) ∧ (2nd𝐺) ∈ (Base‘𝐷) ∧ (2nd𝐼) ∈ (Base‘𝐷))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5039, 44, 46, 48, 49syl13anc 1320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5132, 50sylan2 490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5210fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
5314, 15op2nd 7068 . . . . . 6 (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((2nd𝐹) (2nd𝐺))
5452, 53syl6eq 2660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = ((2nd𝐹) (2nd𝐺)))
5554oveq1d 6564 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = (((2nd𝐹) (2nd𝐺)) (2nd𝐼)))
5620fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
5723, 24op2nd 7068 . . . . . 6 (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((2nd𝐺) (2nd𝐼))
5856, 57syl6eq 2660 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = ((2nd𝐺) (2nd𝐼)))
5958oveq2d 6565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
6051, 55, 593eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))))
6128, 60opeq12d 4348 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩ = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
62 simpl 472 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
632, 3, 4, 5, 6, 8, 7dvhvaddcl 35402 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
64633adantr3 1215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
65 simpr3 1062 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐼 ∈ (𝑇 × 𝐸))
662, 3, 4, 5, 6, 7, 8dvhvadd 35399 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹 + 𝐺) ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
6762, 64, 65, 66syl12anc 1316 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
68 simpr1 1060 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐹 ∈ (𝑇 × 𝐸))
692, 3, 4, 5, 6, 8, 7dvhvaddcl 35402 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
70693adantr1 1213 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
712, 3, 4, 5, 6, 7, 8dvhvadd 35399 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7262, 68, 70, 71syl12anc 1316 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7361, 67, 723eqtr4d 2654 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   × cxp 5036   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771  Grpcgrp 17245  DivRingcdr 18570  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  EDRingcedring 35059  DVecHcdvh 35385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-dvech 35386 This theorem is referenced by:  dvhgrp  35414
 Copyright terms: Public domain W3C validator