Step | Hyp | Ref
| Expression |
1 | | dvhset.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
2 | | dvhset.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | 2 | dvhfset 35387 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (DVecH‘𝐾) = (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
4 | 3 | fveq1d 6105 |
. . 3
⊢ (𝐾 ∈ 𝑋 → ((DVecH‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))‘𝑊)) |
5 | 1, 4 | syl5eq 2656 |
. 2
⊢ (𝐾 ∈ 𝑋 → 𝑈 = ((𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))‘𝑊)) |
6 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
7 | | dvhset.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | 6, 7 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇) |
9 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊)) |
10 | | dvhset.e |
. . . . . . . 8
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
11 | 9, 10 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸) |
12 | 8, 11 | xpeq12d 5064 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) = (𝑇 × 𝐸)) |
13 | 12 | opeq2d 4347 |
. . . . 5
⊢ (𝑤 = 𝑊 → 〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉 = 〈(Base‘ndx), (𝑇 × 𝐸)〉) |
14 | 8 | mpteq1d 4666 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ))) = (ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))) |
15 | 14 | opeq2d 4347 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 〈((1st ‘𝑓) ∘ (1st
‘𝑔)), (ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉 = 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉) |
16 | 12, 12, 15 | mpt2eq123dv 6615 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)) |
17 | 16 | opeq2d 4347 |
. . . . 5
⊢ (𝑤 = 𝑊 → 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉 =
〈(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉) |
18 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = ((EDRing‘𝐾)‘𝑊)) |
19 | | dvhset.d |
. . . . . . 7
⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
20 | 18, 19 | syl6eqr 2662 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = 𝐷) |
21 | 20 | opeq2d 4347 |
. . . . 5
⊢ (𝑤 = 𝑊 → 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉 = 〈(Scalar‘ndx), 𝐷〉) |
22 | 13, 17, 21 | tpeq123d 4227 |
. . . 4
⊢ (𝑤 = 𝑊 → {〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} = {〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉}) |
23 | | eqidd 2611 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 = 〈(𝑠‘(1st
‘𝑓)), (𝑠 ∘ (2nd
‘𝑓))〉) |
24 | 11, 12, 23 | mpt2eq123dv 6615 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)) |
25 | 24 | opeq2d 4347 |
. . . . 5
⊢ (𝑤 = 𝑊 → 〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉 = 〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉) |
26 | 25 | sneqd 4137 |
. . . 4
⊢ (𝑤 = 𝑊 → {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉} = {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) |
27 | 22, 26 | uneq12d 3730 |
. . 3
⊢ (𝑤 = 𝑊 → ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) =
({〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
28 | | eqid 2610 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) = (𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
29 | | tpex 6855 |
. . . 4
⊢
{〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉} ∈
V |
30 | | snex 4835 |
. . . 4
⊢ {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉} ∈
V |
31 | 29, 30 | unex 6854 |
. . 3
⊢
({〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) ∈
V |
32 | 27, 28, 31 | fvmpt 6191 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ ({〈(Base‘ndx),
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝐾)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))‘𝑊) = ({〈(Base‘ndx),
(𝑇 × 𝐸)〉,
〈(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
33 | 5, 32 | sylan9eq 2664 |
1
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝑈 = ({〈(Base‘ndx), (𝑇 × 𝐸)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ 𝑇 ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
𝐷〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |