Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhopvadd2 | Structured version Visualization version GIF version |
Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd 35400 and/or dvhfplusr 35391. (Contributed by NM, 26-Sep-2014.) |
Ref | Expression |
---|---|
dvhopvadd2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhopvadd2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhopvadd2.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhopvadd2.p | ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
dvhopvadd2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhopvadd2.s | ⊢ ✚ = (+g‘𝑈) |
Ref | Expression |
---|---|
dvhopvadd2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhopvadd2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvhopvadd2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvhopvadd2.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | dvhopvadd2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2610 | . . 3 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
6 | dvhopvadd2.s | . . 3 ⊢ ✚ = (+g‘𝑈) | |
7 | eqid 2610 | . . 3 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dvhopvadd 35400 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)〉) |
9 | dvhopvadd2.p | . . . . . 6 ⊢ + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
10 | 1, 2, 3, 4, 5, 9, 7 | dvhfplusr 35391 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = + ) |
11 | 10 | 3ad2ant1 1075 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (+g‘(Scalar‘𝑈)) = + ) |
12 | 11 | oveqd 6566 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (𝑄(+g‘(Scalar‘𝑈))𝑅) = (𝑄 + 𝑅)) |
13 | 12 | opeq2d 4347 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → 〈(𝐹 ∘ 𝐺), (𝑄(+g‘(Scalar‘𝑈))𝑅)〉 = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
14 | 8, 13 | eqtrd 2644 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸)) → (〈𝐹, 𝑄〉 ✚ 〈𝐺, 𝑅〉) = 〈(𝐹 ∘ 𝐺), (𝑄 + 𝑅)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 〈cop 4131 ↦ cmpt 4643 ∘ ccom 5042 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 +gcplusg 15768 Scalarcsca 15771 HLchlt 33655 LHypclh 34288 LTrncltrn 34405 TEndoctendo 35058 DVecHcdvh 35385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-edring 35063 df-dvech 35386 |
This theorem is referenced by: xihopellsmN 35561 dihopellsm 35562 |
Copyright terms: Public domain | W3C validator |