Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvadd Structured version   Visualization version   GIF version

Theorem dvhopvadd 35400
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dvhvadd.h 𝐻 = (LHyp‘𝐾)
dvhvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvadd.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvadd.f 𝐷 = (Scalar‘𝑈)
dvhvadd.s + = (+g𝑈)
dvhvadd.p = (+g𝐷)
Assertion
Ref Expression
dvhopvadd (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)

Proof of Theorem dvhopvadd
StepHypRef Expression
1 simp1 1054 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 opelxpi 5072 . . . 4 ((𝐹𝑇𝑄𝐸) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
323ad2ant2 1076 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸))
4 opelxpi 5072 . . . 4 ((𝐺𝑇𝑅𝐸) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
543ad2ant3 1077 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))
6 dvhvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dvhvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dvhvadd.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 dvhvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dvhvadd.f . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhvadd.s . . . 4 + = (+g𝑈)
12 dvhvadd.p . . . 4 = (+g𝐷)
136, 7, 8, 9, 10, 11, 12dvhvadd 35399 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨𝐹, 𝑄⟩ ∈ (𝑇 × 𝐸) ∧ ⟨𝐺, 𝑅⟩ ∈ (𝑇 × 𝐸))) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
141, 3, 5, 13syl12anc 1316 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩)
15 op1stg 7071 . . . . 5 ((𝐹𝑇𝑄𝐸) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
16153ad2ant2 1076 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐹, 𝑄⟩) = 𝐹)
17 op1stg 7071 . . . . 5 ((𝐺𝑇𝑅𝐸) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
18173ad2ant3 1077 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (1st ‘⟨𝐺, 𝑅⟩) = 𝐺)
1916, 18coeq12d 5208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)) = (𝐹𝐺))
20 op2ndg 7072 . . . . 5 ((𝐹𝑇𝑄𝐸) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
21203ad2ant2 1076 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐹, 𝑄⟩) = 𝑄)
22 op2ndg 7072 . . . . 5 ((𝐺𝑇𝑅𝐸) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
23223ad2ant3 1077 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (2nd ‘⟨𝐺, 𝑅⟩) = 𝑅)
2421, 23oveq12d 6567 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩)) = (𝑄 𝑅))
2519, 24opeq12d 4348 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → ⟨((1st ‘⟨𝐹, 𝑄⟩) ∘ (1st ‘⟨𝐺, 𝑅⟩)), ((2nd ‘⟨𝐹, 𝑄⟩) (2nd ‘⟨𝐺, 𝑅⟩))⟩ = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
2614, 25eqtrd 2644 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑄𝐸) ∧ (𝐺𝑇𝑅𝐸)) → (⟨𝐹, 𝑄+𝐺, 𝑅⟩) = ⟨(𝐹𝐺), (𝑄 𝑅)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cop 4131   × cxp 5036  ccom 5042  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  +gcplusg 15768  Scalarcsca 15771  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  DVecHcdvh 35385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-edring 35063  df-dvech 35386
This theorem is referenced by:  dvhopvadd2  35401  dvhgrp  35414  dvh0g  35418  diblsmopel  35478  cdlemn4  35505  cdlemn6  35509  dihopelvalcpre  35555
  Copyright terms: Public domain W3C validator