Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh0g Structured version   Visualization version   GIF version

Theorem dvh0g 35418
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvh0g.b 𝐵 = (Base‘𝐾)
dvh0g.h 𝐻 = (LHyp‘𝐾)
dvh0g.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvh0g.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh0g.z 0 = (0g𝑈)
dvh0g.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvh0g ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝑂(𝑓)   0 (𝑓)

Proof of Theorem dvh0g
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dvh0g.b . . . . 5 𝐵 = (Base‘𝐾)
3 dvh0g.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dvh0g.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 34454 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
6 eqid 2610 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dvh0g.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
82, 3, 4, 6, 7tendo0cl 35096 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
9 dvh0g.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2610 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
11 eqid 2610 . . . . 5 (+g𝑈) = (+g𝑈)
12 eqid 2610 . . . . 5 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
133, 4, 6, 9, 10, 11, 12dvhopvadd 35400 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
141, 5, 8, 5, 8, 13syl122anc 1327 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩)
15 f1oi 6086 . . . . . 6 ( I ↾ 𝐵):𝐵1-1-onto𝐵
16 f1of 6050 . . . . . 6 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
17 fcoi2 5992 . . . . . 6 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1815, 16, 17mp2b 10 . . . . 5 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
1918a1i 11 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
20 eqid 2610 . . . . . . 7 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
213, 4, 6, 9, 10, 20, 12dvhfplusr 35391 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
2221oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂))
232, 3, 4, 6, 7, 20tendo0pl 35097 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
248, 23mpdan 699 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))𝑂) = 𝑂)
2522, 24eqtrd 2644 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂)
2619, 25opeq12d 4348 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
2714, 26eqtrd 2644 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩)
283, 9, 1dvhlmod 35417 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
29 eqid 2610 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
303, 4, 6, 9, 29dvhelvbasei 35395 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈))
311, 5, 8, 30syl12anc 1316 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈))
32 dvh0g.z . . . 4 0 = (0g𝑈)
3329, 11, 32lmod0vid 18718 . . 3 ((𝑈 ∈ LMod ∧ ⟨( I ↾ 𝐵), 𝑂⟩ ∈ (Base‘𝑈)) → ((⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ 0 = ⟨( I ↾ 𝐵), 𝑂⟩))
3428, 31, 33syl2anc 691 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((⟨( I ↾ 𝐵), 𝑂⟩(+g𝑈)⟨( I ↾ 𝐵), 𝑂⟩) = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ 0 = ⟨( I ↾ 𝐵), 𝑂⟩))
3527, 34mpbid 221 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cop 4131  cmpt 4643   I cid 4948  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771  0gc0g 15923  LModclmod 18686  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  DVecHcdvh 35385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lvec 18924  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-dvech 35386
This theorem is referenced by:  dvheveccl  35419  dib0  35471  dihmeetlem4preN  35613  dihmeetlem13N  35626  dihatlat  35641  dihpN  35643
  Copyright terms: Public domain W3C validator