MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem2 Structured version   Visualization version   GIF version

Theorem dvgt0lem2 23570
Description: Lemma for dvgt0 23571 and dvlt0 23572. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
dvgt0lem.o 𝑂 Or ℝ
dvgt0lem.i (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
Assertion
Ref Expression
dvgt0lem2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem dvgt0lem2
StepHypRef Expression
1 dvgt0lem.i . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
21ex 449 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
32ralrimivva 2954 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
4 dvgt0.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5 dvgt0.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 iccssre 12126 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 691 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ltso 9997 . . . . . 6 < Or ℝ
9 soss 4977 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵)))
107, 8, 9mpisyl 21 . . . . 5 (𝜑 → < Or (𝐴[,]𝐵))
11 dvgt0lem.o . . . . . 6 𝑂 Or ℝ
1211a1i 11 . . . . 5 (𝜑𝑂 Or ℝ)
13 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 cncff 22504 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
16 ssid 3587 . . . . . 6 (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)
1716a1i 11 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
18 soisores 6477 . . . . 5 ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
1910, 12, 15, 17, 18syl22anc 1319 . . . 4 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
203, 19mpbird 246 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
21 ffn 5958 . . . . 5 (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵))
2213, 14, 213syl 18 . . . 4 (𝜑𝐹 Fn (𝐴[,]𝐵))
23 fnresdm 5914 . . . 4 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹)
24 isoeq1 6467 . . . 4 ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2522, 23, 243syl 18 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2620, 25mpbid 221 . 2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
27 fnima 5923 . . 3 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹)
28 isoeq5 6471 . . 3 ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2922, 27, 283syl 18 . 2 (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
3026, 29mpbid 221 1 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540   class class class wbr 4583   Or wor 4958  ran crn 5039  cres 5040  cima 5041   Fn wfn 5799  wf 5800  cfv 5804   Isom wiso 5805  (class class class)co 6549  cr 9814   < clt 9953  (,)cioo 12046  [,]cicc 12049  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053  df-cncf 22489
This theorem is referenced by:  dvgt0  23571  dvlt0  23572
  Copyright terms: Public domain W3C validator