Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvgrat Structured version   Visualization version   GIF version

Theorem dvgrat 37533
Description: Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Hypotheses
Ref Expression
dvgrat.z 𝑍 = (ℤ𝑀)
dvgrat.w 𝑊 = (ℤ𝑁)
dvgrat.n (𝜑𝑁𝑍)
dvgrat.f (𝜑𝐹𝑉)
dvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
dvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
dvgrat.le ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
Assertion
Ref Expression
dvgrat (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑁   𝑘,𝑊   𝑘,𝑀   𝑘,𝑉   𝑘,𝑍

Proof of Theorem dvgrat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dvgrat.n . . . . . . . . 9 (𝜑𝑁𝑍)
2 dvgrat.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2698 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 11573 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6 uzid 11578 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 dvgrat.w . . . . . . . 8 𝑊 = (ℤ𝑁)
86, 7syl6eleqr 2699 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑊)
95, 8syl 17 . . . . . 6 (𝜑𝑁𝑊)
10 simpr 476 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → 𝑘 = 𝑁)
1110eleq1d 2672 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (𝑘𝑊𝑁𝑊))
1210fveq2d 6107 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝐹𝑘) = (𝐹𝑁))
1312fveq2d 6107 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑁)))
1413breq2d 4595 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (0 < (abs‘(𝐹𝑘)) ↔ 0 < (abs‘(𝐹𝑁))))
1511, 14imbi12d 333 . . . . . . 7 ((𝜑𝑘 = 𝑁) → ((𝑘𝑊 → 0 < (abs‘(𝐹𝑘))) ↔ (𝑁𝑊 → 0 < (abs‘(𝐹𝑁)))))
16 dvgrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
177eleq2i 2680 . . . . . . . . . . . . 13 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
182uztrn2 11581 . . . . . . . . . . . . 13 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
1917, 18sylan2b 491 . . . . . . . . . . . 12 ((𝑁𝑍𝑘𝑊) → 𝑘𝑍)
201, 19sylan 487 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → 𝑘𝑍)
21 dvgrat.c . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2220, 21syldan 486 . . . . . . . . . 10 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
23 absgt0 13912 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2516, 24mpbid 221 . . . . . . . 8 ((𝜑𝑘𝑊) → 0 < (abs‘(𝐹𝑘)))
2625ex 449 . . . . . . 7 (𝜑 → (𝑘𝑊 → 0 < (abs‘(𝐹𝑘))))
271, 15, 26vtocld 3230 . . . . . 6 (𝜑 → (𝑁𝑊 → 0 < (abs‘(𝐹𝑁))))
289, 27mpd 15 . . . . 5 (𝜑 → 0 < (abs‘(𝐹𝑁)))
29 0red 9920 . . . . . 6 (𝜑 → 0 ∈ ℝ)
3010eleq1d 2672 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝑘𝑍𝑁𝑍))
3112eleq1d 2672 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
3230, 31imbi12d 333 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → ((𝑘𝑍 → (𝐹𝑘) ∈ ℂ) ↔ (𝑁𝑍 → (𝐹𝑁) ∈ ℂ)))
3321ex 449 . . . . . . . . 9 (𝜑 → (𝑘𝑍 → (𝐹𝑘) ∈ ℂ))
341, 32, 33vtocld 3230 . . . . . . . 8 (𝜑 → (𝑁𝑍 → (𝐹𝑁) ∈ ℂ))
351, 34mpd 15 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℂ)
3635abscld 14023 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
3729, 36ltnled 10063 . . . . 5 (𝜑 → (0 < (abs‘(𝐹𝑁)) ↔ ¬ (abs‘(𝐹𝑁)) ≤ 0))
3828, 37mpbid 221 . . . 4 (𝜑 → ¬ (abs‘(𝐹𝑁)) ≤ 0)
395adantr 480 . . . . 5 ((𝜑𝐹 ⇝ 0) → 𝑁 ∈ ℤ)
4036adantr 480 . . . . 5 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ∈ ℝ)
41 simpr 476 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → 𝐹 ⇝ 0)
42 fvex 6113 . . . . . . . . . 10 (ℤ𝑁) ∈ V
437, 42eqeltri 2684 . . . . . . . . 9 𝑊 ∈ V
4443mptex 6390 . . . . . . . 8 (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V
4544a1i 11 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V)
4622adantlr 747 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
47 eqidd 2611 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) = (𝑖𝑊 ↦ (abs‘(𝐹𝑖))))
48 simpr 476 . . . . . . . . . 10 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
4948fveq2d 6107 . . . . . . . . 9 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (𝐹𝑖) = (𝐹𝑘))
5049fveq2d 6107 . . . . . . . 8 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
51 simpr 476 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → 𝑘𝑊)
52 fvex 6113 . . . . . . . . 9 (abs‘(𝐹𝑘)) ∈ V
5352a1i 11 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ V)
5447, 50, 51, 53fvmptd 6197 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) = (abs‘(𝐹𝑘)))
557, 41, 45, 39, 46, 54climabs 14182 . . . . . 6 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ (abs‘0))
56 abs0 13873 . . . . . 6 (abs‘0) = 0
5755, 56syl6breq 4624 . . . . 5 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ 0)
5846abscld 14023 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
5954, 58eqeltrd 2688 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) ∈ ℝ)
60 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝐹𝑖) = (𝐹𝑁))
6160fveq2d 6107 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑁)))
6261breq2d 4595 . . . . . . . . . . 11 (𝑖 = 𝑁 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
6362imbi2d 329 . . . . . . . . . 10 (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))))
64 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
6564fveq2d 6107 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
6665breq2d 4595 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
6766imbi2d 329 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))))
68 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
6968fveq2d 6107 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (abs‘(𝐹𝑖)) = (abs‘(𝐹‘(𝑘 + 1))))
7069breq2d 4595 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
7170imbi2d 329 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
7236adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ∈ ℝ)
7372leidd 10473 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
7473expcom 450 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
7536ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ∈ ℝ)
7622adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹𝑘) ∈ ℂ)
7776abscld 14023 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ∈ ℝ)
787peano2uzs 11618 . . . . . . . . . . . . . . . . . 18 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
79 ovex 6577 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
80 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
8180anbi2d 736 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
8268eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
8381, 82imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
84 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
8584anbi2d 736 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
86 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
8786eleq1d 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
8885, 87imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
8988, 22chvarv 2251 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
9079, 83, 89vtocl 3232 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9178, 90sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 14023 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
94 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
95 dvgrat.le . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9695adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9775, 77, 93, 94, 96letrd 10073 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9897ex 449 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9917, 98sylan2br 492 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
10099expcom 450 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
101100a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
10263, 67, 71, 67, 74, 101uzind4 11622 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
103102impcom 445 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
10417, 103sylan2b 491 . . . . . . 7 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
105104adantlr 747 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
106105, 54breqtrrd 4611 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘))
1077, 39, 40, 57, 59, 106climlec2 14237 . . . 4 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ≤ 0)
10838, 107mtand 689 . . 3 (𝜑 → ¬ 𝐹 ⇝ 0)
109 eluzel2 11568 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1103, 109syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
111110adantr 480 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
112 dvgrat.f . . . . 5 (𝜑𝐹𝑉)
113112adantr 480 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹𝑉)
114 simpr 476 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
11521adantlr 747 . . . 4 (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1162, 111, 113, 114, 115serf0 14259 . . 3 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0)
117108, 116mtand 689 . 2 (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
118 df-nel 2783 . 2 (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
119117, 118sylibr 223 1 (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wnel 2781  Vcvv 3173   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cz 11254  cuz 11563  seqcseq 12663  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068
This theorem is referenced by:  cvgdvgrat  37534
  Copyright terms: Public domain W3C validator