MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Structured version   Visualization version   GIF version

Theorem dvfsumrlimge0 23597
Description: Lemma for dvfsumrlim 23598. Satisfy the assumption of dvfsumlem4 23596. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlimge0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlimge0
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6 𝑆 = (𝑇(,)+∞)
2 ioossre 12106 . . . . . 6 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3598 . . . . 5 𝑆 ⊆ ℝ
4 simprl 790 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥𝑆)
53, 4sseldi 3566 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ)
65rexrd 9968 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ ℝ*)
75renepnfd 9969 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ≠ +∞)
8 icopnfsup 12526 . . 3 ((𝑥 ∈ ℝ*𝑥 ≠ +∞) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 691 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → sup((𝑥[,)+∞), ℝ*, < ) = +∞)
10 dvfsum.t . . . . . . 7 (𝜑𝑇 ∈ ℝ)
1110rexrd 9968 . . . . . 6 (𝜑𝑇 ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 ∈ ℝ*)
134, 1syl6eleq 2698 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑥 ∈ (𝑇(,)+∞))
14 elioopnf 12138 . . . . . . . 8 (𝑇 ∈ ℝ* → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1512, 14syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ (𝑇(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥)))
1613, 15mpbid 221 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥 ∈ ℝ ∧ 𝑇 < 𝑥))
1716simprd 478 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑇 < 𝑥)
18 df-ioo 12050 . . . . . 6 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
19 df-ico 12052 . . . . . 6 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
20 xrltletr 11864 . . . . . 6 ((𝑇 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑥𝑥𝑧) → 𝑇 < 𝑧))
2118, 19, 20ixxss1 12064 . . . . 5 ((𝑇 ∈ ℝ*𝑇 < 𝑥) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2212, 17, 21syl2anc 691 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ (𝑇(,)+∞))
2322, 1syl6sseqr 3615 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥[,)+∞) ⊆ 𝑆)
24 dvfsum.c . . . . 5 (𝑥 = 𝑘𝐵 = 𝐶)
2524cbvmptv 4678 . . . 4 (𝑥𝑆𝐵) = (𝑘𝑆𝐶)
26 dvfsumrlim.k . . . . 5 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑥𝑆𝐵) ⇝𝑟 0)
2825, 27syl5eqbrr 4619 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐶) ⇝𝑟 0)
2923, 28rlimres2 14140 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐶) ⇝𝑟 0)
303a1i 11 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝑆 ⊆ ℝ)
313a1i 11 . . . . . . 7 (𝜑𝑆 ⊆ ℝ)
32 dvfsum.a . . . . . . 7 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
33 dvfsum.b1 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵𝑉)
34 dvfsum.b3 . . . . . . 7 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
3531, 32, 33, 34dvmptrecl 23591 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
3635adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
3736recnd 9947 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℂ)
38 rlimconst 14123 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
3930, 37, 38syl2anc 691 . . 3 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘𝑆𝐵) ⇝𝑟 𝐵)
4023, 39rlimres2 14140 . 2 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↦ 𝐵) ⇝𝑟 𝐵)
4123sselda 3568 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑘𝑆)
4235ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
4342adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
4424eleq1d 2672 . . . . 5 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
4544rspccva 3281 . . . 4 ((∀𝑥𝑆 𝐵 ∈ ℝ ∧ 𝑘𝑆) → 𝐶 ∈ ℝ)
4643, 45sylan 487 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘𝑆) → 𝐶 ∈ ℝ)
4741, 46syldan 486 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶 ∈ ℝ)
4836adantr 480 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐵 ∈ ℝ)
49 simpll 786 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝜑)
50 simplrl 796 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑆)
51 simplrr 797 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐷𝑥)
52 elicopnf 12140 . . . . 5 (𝑥 ∈ ℝ → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
535, 52syl 17 . . . 4 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → (𝑘 ∈ (𝑥[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 𝑥𝑘)))
5453simplbda 652 . . 3 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝑥𝑘)
55 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
5649, 50, 41, 51, 54, 55syl122anc 1327 . 2 (((𝜑 ∧ (𝑥𝑆𝐷𝑥)) ∧ 𝑘 ∈ (𝑥[,)+∞)) → 𝐶𝐵)
579, 29, 40, 47, 48, 56rlimle 14226 1 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  (,)cioo 12046  [,)cico 12048  ...cfz 12197  cfl 12453  𝑟 crli 14064  Σcsu 14264   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvfsumrlim  23598  dvfsumrlim2  23599
  Copyright terms: Public domain W3C validator