MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Visualization version   GIF version

Theorem dvdsr 18469
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4 = (∥r𝑅)
21reldvdsr 18467 . . 3 Rel
3 brrelex12 5079 . . 3 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
42, 3mpan 702 . 2 (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3185 . . 3 (𝑋𝐵𝑋 ∈ V)
6 id 22 . . . . 5 ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌)
7 ovex 6577 . . . . 5 (𝑧 · 𝑋) ∈ V
86, 7syl6eqelr 2697 . . . 4 ((𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
98rexlimivw 3011 . . 3 (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
105, 9anim12i 588 . 2 ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
11 simpl 472 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211eleq1d 2672 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
1311oveq2d 6565 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
14 simpr 476 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1513, 14eqeq12d 2625 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
1615rexbidv 3034 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
1712, 16anbi12d 743 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
18 dvdsr.1 . . . 4 𝐵 = (Base‘𝑅)
19 dvdsr.3 . . . 4 · = (.r𝑅)
2018, 1, 19dvdsrval 18468 . . 3 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
2117, 20brabga 4914 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
224, 10, 21pm5.21nii 367 1 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173   class class class wbr 4583  Rel wrel 5043  cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  rcdsr 18461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-dvdsr 18464
This theorem is referenced by:  dvdsr2  18470  dvdsrmul  18471  dvdsrcl  18472  dvdsrcl2  18473  dvdsrtr  18475  dvdsrmul1  18476  opprunit  18484  crngunit  18485  subrgdvds  18617  rhmdvdsr  29149
  Copyright terms: Public domain W3C validator