Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Visualization version   GIF version

Theorem dvdsr 18469
 Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4 = (∥r𝑅)
21reldvdsr 18467 . . 3 Rel
3 brrelex12 5079 . . 3 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
42, 3mpan 702 . 2 (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3185 . . 3 (𝑋𝐵𝑋 ∈ V)
6 id 22 . . . . 5 ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌)
7 ovex 6577 . . . . 5 (𝑧 · 𝑋) ∈ V
86, 7syl6eqelr 2697 . . . 4 ((𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
98rexlimivw 3011 . . 3 (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
105, 9anim12i 588 . 2 ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
11 simpl 472 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211eleq1d 2672 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
1311oveq2d 6565 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
14 simpr 476 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1513, 14eqeq12d 2625 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
1615rexbidv 3034 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
1712, 16anbi12d 743 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
18 dvdsr.1 . . . 4 𝐵 = (Base‘𝑅)
19 dvdsr.3 . . . 4 · = (.r𝑅)
2018, 1, 19dvdsrval 18468 . . 3 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
2117, 20brabga 4914 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
224, 10, 21pm5.21nii 367 1 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   class class class wbr 4583  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  ∥rcdsr 18461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-dvdsr 18464 This theorem is referenced by:  dvdsr2  18470  dvdsrmul  18471  dvdsrcl  18472  dvdsrcl2  18473  dvdsrtr  18475  dvdsrmul1  18476  opprunit  18484  crngunit  18485  subrgdvds  18617  rhmdvdsr  29149
 Copyright terms: Public domain W3C validator