MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Visualization version   GIF version

Theorem dvdslelem 14869
Description: Lemma for dvdsle 14870. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1 𝑀 ∈ ℤ
dvdslelem.2 𝑁 ∈ ℕ
dvdslelem.3 𝐾 ∈ ℤ
Assertion
Ref Expression
dvdslelem (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6 𝐾 ∈ ℤ
21zrei 11260 . . . . 5 𝐾 ∈ ℝ
3 0re 9919 . . . . 5 0 ∈ ℝ
4 lelttric 10023 . . . . 5 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
52, 3, 4mp2an 704 . . . 4 (𝐾 ≤ 0 ∨ 0 < 𝐾)
6 zgt0ge1 11308 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
71, 6ax-mp 5 . . . . 5 (0 < 𝐾 ↔ 1 ≤ 𝐾)
87orbi2i 540 . . . 4 ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
95, 8mpbi 219 . . 3 (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)
10 le0neg1 10415 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
112, 10ax-mp 5 . . . . . . . 8 (𝐾 ≤ 0 ↔ 0 ≤ -𝐾)
12 dvdslelem.2 . . . . . . . . . . . 12 𝑁 ∈ ℕ
1312nngt0i 10931 . . . . . . . . . . 11 0 < 𝑁
1412nnrei 10906 . . . . . . . . . . . 12 𝑁 ∈ ℝ
15 dvdslelem.1 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
1615zrei 11260 . . . . . . . . . . . 12 𝑀 ∈ ℝ
173, 14, 16lttri 10042 . . . . . . . . . . 11 ((0 < 𝑁𝑁 < 𝑀) → 0 < 𝑀)
1813, 17mpan 702 . . . . . . . . . 10 (𝑁 < 𝑀 → 0 < 𝑀)
193, 16ltlei 10038 . . . . . . . . . 10 (0 < 𝑀 → 0 ≤ 𝑀)
2018, 19syl 17 . . . . . . . . 9 (𝑁 < 𝑀 → 0 ≤ 𝑀)
212renegcli 10221 . . . . . . . . . 10 -𝐾 ∈ ℝ
2221, 16mulge0i 10454 . . . . . . . . 9 ((0 ≤ -𝐾 ∧ 0 ≤ 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2320, 22sylan2 490 . . . . . . . 8 ((0 ≤ -𝐾𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2411, 23sylanb 488 . . . . . . 7 ((𝐾 ≤ 0 ∧ 𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2524expcom 450 . . . . . 6 (𝑁 < 𝑀 → (𝐾 ≤ 0 → 0 ≤ (-𝐾 · 𝑀)))
262, 16remulcli 9933 . . . . . . . 8 (𝐾 · 𝑀) ∈ ℝ
27 le0neg1 10415 . . . . . . . 8 ((𝐾 · 𝑀) ∈ ℝ → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
2826, 27ax-mp 5 . . . . . . 7 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀))
292recni 9931 . . . . . . . . 9 𝐾 ∈ ℂ
3016recni 9931 . . . . . . . . 9 𝑀 ∈ ℂ
3129, 30mulneg1i 10355 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
3231breq2i 4591 . . . . . . 7 (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀))
3328, 32bitr4i 266 . . . . . 6 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀))
3425, 33syl6ibr 241 . . . . 5 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) ≤ 0))
3526, 3, 14lelttri 10043 . . . . . 6 (((𝐾 · 𝑀) ≤ 0 ∧ 0 < 𝑁) → (𝐾 · 𝑀) < 𝑁)
3613, 35mpan2 703 . . . . 5 ((𝐾 · 𝑀) ≤ 0 → (𝐾 · 𝑀) < 𝑁)
3734, 36syl6 34 . . . 4 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
38 lemulge12 10765 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝑀 ∧ 1 ≤ 𝐾)) → 𝑀 ≤ (𝐾 · 𝑀))
3916, 2, 38mpanl12 714 . . . . . . 7 ((0 ≤ 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4020, 39sylan 487 . . . . . 6 ((𝑁 < 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4140ex 449 . . . . 5 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑀 ≤ (𝐾 · 𝑀)))
4214, 16, 26ltletri 10044 . . . . . 6 ((𝑁 < 𝑀𝑀 ≤ (𝐾 · 𝑀)) → 𝑁 < (𝐾 · 𝑀))
4342ex 449 . . . . 5 (𝑁 < 𝑀 → (𝑀 ≤ (𝐾 · 𝑀) → 𝑁 < (𝐾 · 𝑀)))
4441, 43syld 46 . . . 4 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4537, 44orim12d 879 . . 3 (𝑁 < 𝑀 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
469, 45mpi 20 . 2 (𝑁 < 𝑀 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4726, 14lttri2i 10030 . 2 ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4846, 47sylibr 223 1 (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  -cneg 10146  cn 10897  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255
This theorem is referenced by:  dvdsle  14870
  Copyright terms: Public domain W3C validator