MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   GIF version

Theorem dvdsaddre2b 14867
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 14866 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 14866 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
21a1d 25 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
323exp 1256 . . . . 5 (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
43com24 93 . . . 4 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
543imp 1249 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
65com12 32 . 2 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
7 dvdszrcl 14826 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 pm2.24 120 . . . . . . 7 (𝐵 ∈ ℤ → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
97, 8simpl2im 656 . . . . . 6 (𝐴𝐵 → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
109com12 32 . . . . 5 𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
1110adantr 480 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
12 dvdszrcl 14826 . . . . . 6 (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ))
13 zcn 11259 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐶 ∈ ℂ)
15 recn 9905 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 760 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1714, 16addcomd 10117 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
18 eldif 3550 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (ℝ ∖ ℤ) ↔ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ))
19 nzadd 11302 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ (ℝ ∖ ℤ))
2019eldifbd 3553 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2120expcom 450 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → (𝐵 ∈ (ℝ ∖ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2218, 21syl5bir 232 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℤ → ((𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2322imp 444 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2417, 23eqneltrd 2707 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐶 + 𝐵) ∈ ℤ)
2524exp32 629 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ¬ (𝐶 + 𝐵) ∈ ℤ)))
26 pm2.21 119 . . . . . . . . . . . . 13 (¬ (𝐶 + 𝐵) ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
2725, 26syl8 74 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2827adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2928com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
3029a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))))
31303imp 1249 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))
3231impcom 445 . . . . . . 7 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
3332com12 32 . . . . . 6 ((𝐶 + 𝐵) ∈ ℤ → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3412, 33simpl2im 656 . . . . 5 (𝐴 ∥ (𝐶 + 𝐵) → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3534com12 32 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐴𝐵))
3611, 35impbid 201 . . 3 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
3736ex 449 . 2 𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
386, 37pm2.61i 175 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  cdif 3537   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814   + caddc 9818  cz 11254  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-dvds 14822
This theorem is referenced by:  2lgsoddprmlem2  24934
  Copyright terms: Public domain W3C validator