MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2lem Structured version   Visualization version   GIF version

Theorem dvds2lem 14832
Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
dvds2lem.2 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
dvds2lem.3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds2lem.4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
dvds2lem.5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds2lem (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem dvds2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
2 dvds2lem.2 . . . . . 6 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 divides 14823 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽))
4 divides 14823 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾𝐿 ↔ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
53, 4bi2anan9 913 . . . . . 6 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
61, 2, 5syl2anc 691 . . . . 5 (𝜑 → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
76biimpd 218 . . . 4 (𝜑 → ((𝐼𝐽𝐾𝐿) → (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
8 reeanv 3086 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
97, 8syl6ibr 241 . . 3 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿)))
10 dvds2lem.4 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
11 dvds2lem.5 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
12 oveq1 6556 . . . . . . 7 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
1312eqeq1d 2612 . . . . . 6 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
1413rspcev 3282 . . . . 5 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
1510, 11, 14syl6an 566 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1615rexlimdvva 3020 . . 3 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
179, 16syld 46 . 2 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
18 dvds2lem.3 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
19 divides 14823 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2018, 19syl 17 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2117, 20sylibrd 248 1 (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  (class class class)co 6549   · cmul 9820  cz 11254  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-iota 5768  df-fv 5812  df-ov 6552  df-dvds 14822
This theorem is referenced by:  dvds2ln  14852  dvds2add  14853  dvds2sub  14854  dvdstr  14856
  Copyright terms: Public domain W3C validator