Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivcncf Structured version   Visualization version   GIF version

Theorem dvdivcncf 38817
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivcncf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivcncf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivcncf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivcncf.fdv (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
dvdivcncf.gdv (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
dvdivcncf (𝜑 → (𝑆 D (𝐹𝑓 / 𝐺)) ∈ (𝑋cn→ℂ))

Proof of Theorem dvdivcncf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdivcncf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivcncf.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvdivcncf.g . . 3 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
4 dvdivcncf.fdv . . . 4 (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
5 cncff 22504 . . . 4 ((𝑆 D 𝐹) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ)
6 fdm 5964 . . . 4 ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋)
74, 5, 63syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
8 dvdivcncf.gdv . . . 4 (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
9 cncff 22504 . . . 4 ((𝑆 D 𝐺) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ)
10 fdm 5964 . . . 4 ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋)
118, 9, 103syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
121, 2, 3, 7, 11dvdivf 38812 . 2 (𝜑 → (𝑆 D (𝐹𝑓 / 𝐺)) = ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺𝑓 · 𝐺)))
13 ax-resscn 9872 . . . . . . . . 9 ℝ ⊆ ℂ
14 sseq1 3589 . . . . . . . . 9 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
1513, 14mpbiri 247 . . . . . . . 8 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
16 eqimss 3620 . . . . . . . 8 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1715, 16pm3.2i 470 . . . . . . 7 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
18 elpri 4145 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
191, 18syl 17 . . . . . . 7 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
20 pm3.44 532 . . . . . . 7 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
2117, 19, 20mpsyl 66 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
22 difssd 3700 . . . . . . 7 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
233, 22fssd 5970 . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
24 dvbsss 23472 . . . . . . 7 dom (𝑆 D 𝐹) ⊆ 𝑆
257, 24syl6eqssr 3619 . . . . . 6 (𝜑𝑋𝑆)
26 dvcn 23490 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋cn→ℂ))
2721, 23, 25, 11, 26syl31anc 1321 . . . . 5 (𝜑𝐺 ∈ (𝑋cn→ℂ))
284, 27mulcncff 38753 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∈ (𝑋cn→ℂ))
29 dvcn 23490 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋cn→ℂ))
3021, 2, 25, 7, 29syl31anc 1321 . . . . 5 (𝜑𝐹 ∈ (𝑋cn→ℂ))
318, 30mulcncff 38753 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) ∈ (𝑋cn→ℂ))
3228, 31subcncff 38765 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∈ (𝑋cn→ℂ))
33 eldifi 3694 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
3433adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
35 eldifi 3694 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
3635adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
3734, 36mulcld 9939 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
38 eldifsni 4261 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
3938adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
40 eldifsni 4261 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
4140adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
4234, 36, 39, 41mulne0d 10558 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
43 eldifsn 4260 . . . . . . 7 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
4437, 42, 43sylanbrc 695 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
4544adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
461, 25ssexd 4733 . . . . 5 (𝜑𝑋 ∈ V)
47 inidm 3784 . . . . 5 (𝑋𝑋) = 𝑋
4845, 3, 3, 46, 46, 47off 6810 . . . 4 (𝜑 → (𝐺𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0}))
4927, 27mulcncff 38753 . . . . 5 (𝜑 → (𝐺𝑓 · 𝐺) ∈ (𝑋cn→ℂ))
50 cncffvrn 22509 . . . . 5 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺𝑓 · 𝐺) ∈ (𝑋cn→ℂ)) → ((𝐺𝑓 · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0})))
5122, 49, 50syl2anc 691 . . . 4 (𝜑 → ((𝐺𝑓 · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺𝑓 · 𝐺):𝑋⟶(ℂ ∖ {0})))
5248, 51mpbird 246 . . 3 (𝜑 → (𝐺𝑓 · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})))
5332, 52divcncff 38777 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 − ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) ∘𝑓 / (𝐺𝑓 · 𝐺)) ∈ (𝑋cn→ℂ))
5412, 53eqeltrd 2688 1 (𝜑 → (𝑆 D (𝐹𝑓 / 𝐺)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  wss 3540  {csn 4125  {cpr 4127  dom cdm 5038  wf 5800  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cmin 10145   / cdiv 10563  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem58  39057  fourierdlem59  39058
  Copyright terms: Public domain W3C validator