Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   GIF version

Theorem dvcjbr 23518
 Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 23519. (This doesn't follow from dvcobr 23515 because ∗ is not a function on the reals, and even if we used complex derivatives, ∗ is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 9872 . . . . 5 ℝ ⊆ ℂ
21a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2610 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65tgioo2 22414 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
72, 3, 4, 6, 5dvbssntr 23470 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3569 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1syl6ss 3580 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 11 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 472 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 476 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 23471 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 691 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3569 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlem 23466 . . . . 5 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
18 eqid 2610 . . . . 5 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
1917, 18fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
20 ssid 3587 . . . . 5 ℂ ⊆ ℂ
2120a1i 11 . . . 4 (𝜑 → ℂ ⊆ ℂ)
225cnfldtopon 22396 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2322toponunii 20547 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
2423restid 15917 . . . . . 6 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2522, 24ax-mp 5 . . . . 5 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2625eqcomi 2619 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
27 dvf 23477 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
28 ffun 5961 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
29 funfvbrb 6238 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3027, 28, 29mp2b 10 . . . . . . 7 (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
318, 30sylib 207 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
326, 5, 18, 2, 3, 4eldv 23468 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3331, 32mpbid 221 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3433simprd 478 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
35 cjcncf 22515 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
365cncfcn1 22521 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3735, 36eleqtri 2686 . . . . 5 ∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3827ffvelrni 6266 . . . . . 6 (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
398, 38syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
4023cncnpi 20892 . . . . 5 ((∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
4137, 39, 40sylancr 694 . . . 4 (𝜑 → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
4219, 21, 5, 26, 34, 41limccnp 23461 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
43 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))))
44 cjf 13692 . . . . . . . 8 ∗:ℂ⟶ℂ
4544a1i 11 . . . . . . 7 (𝜑 → ∗:ℂ⟶ℂ)
4645feqmptd 6159 . . . . . 6 (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
47 fveq2 6103 . . . . . 6 (𝑦 = (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) → (∗‘𝑦) = (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))))
4817, 43, 46, 47fmptco 6303 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
493adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
50 eldifi 3694 . . . . . . . . . . 11 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝑋)
5150adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝑋)
5249, 51ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑥) ∈ ℂ)
533, 16ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5453adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5552, 54subcld 10271 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
564sselda 3568 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5750, 56sylan2 490 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ)
584, 16sseldd 3569 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
5958adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ)
6057, 59resubcld 10337 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℝ)
6160recnd 9947 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℂ)
6257recnd 9947 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ)
6359recnd 9947 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
64 eldifsni 4261 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝐶)
6564adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝐶)
6662, 63, 65subne0d 10280 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ≠ 0)
6755, 61, 66cjdivd 13811 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
68 cjsub 13737 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
6952, 54, 68syl2anc 691 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
70 fvco3 6185 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
713, 50, 70syl2an 493 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
72 fvco3 6185 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
733, 16, 72syl2anc 691 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7571, 74oveq12d 6567 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7669, 75eqtr4d 2647 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
7760cjred 13814 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
7876, 77oveq12d 6567 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7967, 78eqtrd 2644 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8079mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8148, 80eqtrd 2644 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8281oveq1d 6564 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8342, 82eleqtrd 2690 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
84 eqid 2610 . . 3 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
85 fco 5971 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
8644, 3, 85sylancr 694 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
876, 5, 84, 2, 86, 4eldv 23468 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
889, 83, 87mpbir2and 959 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ∘ ccom 5042  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   − cmin 10145   / cdiv 10563  (,)cioo 12046  ∗ccj 13684   ↾t crest 15904  TopOpenctopn 15905  topGenctg 15921  ℂfldccnfld 19567  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839  –cn→ccncf 22487   limℂ climc 23432   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvcj  23519
 Copyright terms: Public domain W3C validator