Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvel Structured version   Visualization version   GIF version

Theorem dstfrvel 29862
 Description: Elementhood of preimage maps produced by the "lower than or equal" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
dstfrvel.1 (𝜑𝐵 dom 𝑃)
dstfrvel.2 (𝜑 → (𝑋𝐵) ≤ 𝐴)
Assertion
Ref Expression
dstfrvel (𝜑𝐵 ∈ (𝑋RV/𝑐𝐴))

Proof of Theorem dstfrvel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . . . . . 6 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvvf 29833 . . . . 5 (𝜑𝑋: dom 𝑃⟶ℝ)
4 dstfrvel.1 . . . . 5 (𝜑𝐵 dom 𝑃)
53, 4ffvelrnd 6268 . . . 4 (𝜑 → (𝑋𝐵) ∈ ℝ)
6 dstfrvel.2 . . . 4 (𝜑 → (𝑋𝐵) ≤ 𝐴)
7 breq1 4586 . . . . 5 (𝑥 = (𝑋𝐵) → (𝑥𝐴 ↔ (𝑋𝐵) ≤ 𝐴))
87elrab 3331 . . . 4 ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ ((𝑋𝐵) ∈ ℝ ∧ (𝑋𝐵) ≤ 𝐴))
95, 6, 8sylanbrc 695 . . 3 (𝜑 → (𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴})
10 ffun 5961 . . . . 5 (𝑋: dom 𝑃⟶ℝ → Fun 𝑋)
113, 10syl 17 . . . 4 (𝜑 → Fun 𝑋)
121, 2rrvdm 29835 . . . . 5 (𝜑 → dom 𝑋 = dom 𝑃)
134, 12eleqtrrd 2691 . . . 4 (𝜑𝐵 ∈ dom 𝑋)
14 fvimacnv 6240 . . . 4 ((Fun 𝑋𝐵 ∈ dom 𝑋) → ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ 𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴})))
1511, 13, 14syl2anc 691 . . 3 (𝜑 → ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ 𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴})))
169, 15mpbid 221 . 2 (𝜑𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
17 orvclteel.1 . . 3 (𝜑𝐴 ∈ ℝ)
181, 2, 17orrvcval4 29853 . 2 (𝜑 → (𝑋RV/𝑐𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
1916, 18eleqtrrd 2691 1 (𝜑𝐵 ∈ (𝑋RV/𝑐𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∈ wcel 1977  {crab 2900  ∪ cuni 4372   class class class wbr 4583  ◡ccnv 5037  dom cdm 5038   “ cima 5041  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814   ≤ cle 9954  Probcprb 29796  rRndVarcrrv 29829  ∘RV/𝑐corvc 29844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-esum 29417  df-siga 29498  df-sigagen 29529  df-brsiga 29572  df-meas 29586  df-mbfm 29640  df-prob 29797  df-rrv 29830  df-orvc 29845 This theorem is referenced by:  dstfrvunirn  29863
 Copyright terms: Public domain W3C validator